35 research outputs found

    Plasticity, and Its Limits, in Adult Human Primary Visual Cortex

    Get PDF
    There is an ongoing debate about whether adult human primary visual cortex (V1) is capable of large-scale cortical reorganization in response to bilateral retinal lesions. Animal models suggest that the visual neural circuitry maintains some plasticity through adulthood, and there are also a few human imaging studies in support this notion. However, the interpretation of these data has been brought into question, because there are factors besides cortical reorganization, such as the presence of sampling bias and/or the unmasking of task-dependent feedback signals from higher level visual areas, that could also explain the results. How reasonable would it be to accept that adult human V1 does not reorganize itself in the face of disease? Here, we discuss new evidence for the hypothesis that adult human V1 is not as capable of reorganization as in animals and juveniles, because in adult humans, cortical reorganization would come with costs that outweigh its benefits. These costs are likely functional and visible in recent experiments on adaptation — a rapid, short-term form of neural plasticity — where they prevent reorganization from being sustained over the long term

    Preserved retinotopic brain connectivity in macular degeneration

    Get PDF
    PURPOSE: The eye disease macular degeneration (MD) is a leading cause of blindness worldwide. There is no cure for MD, but several promising treatments aimed at restoring vision at the level of the retina are currently under investigation. These treatments assume that the patient's brain can still process appropriately the retinal input once it is restored, but whether this assumption is correct has yet to be determined. METHODS: We used functional magnetic resonance imaging (fMRI) and connective field modelling to determine whether the functional connectivity between the input-deprived portions of primary visual cortex (V1) and early extrastriate areas (V2/3) is still retinotopically organised. Specifically, in both patients with juvenile macular degeneration and age-matched controls with simulated retinal lesions, we assessed the extent to which the V1-referred connective fields of extrastriate voxels, as estimated on the basis of spontaneous fMRI signal fluctuations, adhered to retinotopic organisation. RESULTS: We found that functional connectivity between the input-deprived portions of visual areas V1 and extrastriate cortex is still largely retinotopically organised in MD, although on average less so than in controls. Patients with stable fixation exhibited normal retinotopic connectivity, however, suggesting that for the patients with unstable fixation, eye-movements resulted in spurious, homogeneous signal modulations across the entire input-deprived cortex, which would have hampered our ability to assess their spatial structure of connectivity. CONCLUSIONS: Despite the prolonged loss of visual input due to MD, the cortico-cortical connections of input-deprived visual cortex remain largely intact. This suggests that the restoration of sight in macular degeneration can rely on a largely unchanged retinotopic representation in early visual cortex following loss of central retinal function

    Linking cortical visual processing to viewing behavior using fMRI

    Get PDF
    One characteristic of natural visual behavior in humans is the frequent shifting of eye position. It has been argued that the characteristics of these eye movements can be used to distinguish between distinct modes of visual processing (Unema et al., 2005). These viewing modes would be distinguishable on the basis of the eye-movement parameters fixation duration and saccade amplitude and have been hypothesized to reflect the differential involvement of dorsal and ventral systems in saccade planning and information processing. According to this hypothesis, on the one hand, while in a “pre-attentive” or ambient mode, primarily scanning eye movements are made; in this mode fixation are relatively brief and saccades tends to be relatively large. On the other hand, in “attentive” focal mode, fixations last longer and saccades are relatively small, and result in viewing behavior which could be described as detailed inspection. Thus far, no neuroscientific basis exists to support the idea that such distinct viewing modes are indeed linked to processing in distinct cortical regions. Here, we used fixation-based event-related (FIBER) fMRI in combination with independent component analysis (ICA) to investigate the neural correlates of these viewing modes. While we find robust eye-movement-related activations, our results do not support the theory that the above mentioned viewing modes modulate dorsal and ventral processing. Instead, further analyses revealed that eye-movement characteristics such as saccade amplitude and fixation duration did differentially modulate activity in three clusters in early, ventromedial and ventrolateral visual cortex. In summary, we conclude that evaluating viewing behavior is crucial for unraveling cortical processing in natural vision

    Health-Related Quality of Life in Adrenocortical Carcinoma:Development of the Disease-Specific Questionnaire ACC-QOL and Results from the PROFILES Registry

    Get PDF
    SIMPLE SUMMARY: Patients with the rare cancer adrenocortical carcinoma are exposed to many symptoms and treatment side-effects. Research on how this can affect their health-related quality of life (HRQoL) is limited, however. This article includes the first assessment of HRQoL in a population-based cohort of patients with adrenocortical carcinoma with the European Organization for Research and Treatment of Cancer QLQ-C30 questionnaire and the newly developed disease-specific additional questionnaire ACC-QOL. The ACC-QOL has good psychometric properties in terms of validity, reliability, and responsiveness. Patients diagnosed more than 5 years ago reported a relatively good HRQoL compared with the Dutch reference population, but experienced residual fatigue and emotional problems. Patients after additional surgery reported a slightly lower HRQoL due to physical limitations. Patients who had recently received mitotane or chemotherapy reported a worse HRQoL and problems in many domains. This knowledge and the new disease-specific questionnaire can aid future research, side-effect monitoring, treatment guidance, and shared decision making. ABSTRACT: We aimed to develop a disease-specific adrenocortical carcinoma (ACC) health-related quality of life (HRQoL) questionnaire (ACC-QOL) and assess HRQoL in a population-based cohort of patients with ACC. Development was in line with European Organization for Research and Treatment of Cancer (EORTC) guidelines, though not an EORTC product. In phase I and II, we identified 90 potential HRQoL issues using literature and focus groups, which were reduced to 39 by healthcare professionals. Pilot testing resulted in 28 questions, to be used alongside the EORTC QLQ-C30. In Phase III, 100 patients with ACC were asked to complete the questionnaires twice in the PROFILES registry (3-month interval, respondents: first 67, second 51). Confirmatory factor analysis demonstrated the structural validity of 26 questions with their scale structure (mitotane side-effects, hypercortisolism/hydrocortisone effects, emotional effects). Internal consistency and reliability were good (Cronbach’s alpha 0.897, Interclass correlation coefficient 0.860). Responsiveness analysis showed good discriminative ability (AUC 0.788). Patients diagnosed more than 5 years ago reported a good HRQoL compared with the Dutch reference population, but experienced residual fatigue and emotional problems. Patients who underwent recent treatment reported a lower HRQoL and problems in several domains. In conclusion, we developed an ACC-specific HRQoL questionnaire with good psychometric properties

    Population Receptive Field Dynamics in Human Visual Cortex

    Get PDF
    Seminal work in the early nineties revealed that the visual receptive field of neurons in cat primary visual cortex can change in location and size when artificial scotomas are applied. Recent work now suggests that these single neuron receptive field dynamics also pertain to the neuronal population receptive field (pRF) that can be measured in humans with functional magnetic resonance imaging (fMRI). To examine this further, we estimated the pRF in twelve healthy participants while masking the central portion of the visual field. We found that the pRF changes in location and size for two differently sized artificial scotomas, and that these pRF dynamics are most likely due to a combination of the neuronal receptive field position and size scatter as well as modulatory feedback signals from extrastriate visual areas

    Commande en position et force d'un robot manipulateur d'assemblage

    Get PDF
    SIGLECNRS T 59274 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc
    corecore