1,487 research outputs found

    Prospective Single-Arm, Multi-Center Trial of a Patient-Specific Interpositional Knee Implant: Early Clinical Results

    Get PDF
    Within narrow indication of patients with unicompartmental disease, the iForma device can provide improvement in knee function and reduction in pain, however, with a significant higher risk of early revision compared to traditional arthroplasty. Respecting this limitation it may be an alternative option for arthritic patients with unicompartmental disease who have contraindications to High Tibial Osteotomy or are too young for knee replacement; the iForma device further has the distinct advantage of time and cost saving compared to those procedures

    Concurrent MEK targeted therapy prevents MAPK pathway reactivation during BRAFV600E targeted inhibition in a novel syngeneic murine glioma model.

    Get PDF
    Inhibitors of BRAFV600E kinase are currently under investigations in preclinical and clinical studies involving BRAFV600E glioma. Studies demonstrated clinical response to such individualized therapy in the majority of patients whereas in some patients tumors continue to grow despite treatment. To study resistance mechanisms, which include feedback activation of mitogen-activated protein kinase (MAPK) signaling in melanoma, we developed a luciferase-modified cell line (2341luc) from a BrafV600E mutant and Cdkn2a- deficient murine high-grade glioma, and analyzed its molecular responses to BRAFV600E- and MAPK kinase (MEK)-targeted inhibition. Immunocompetent, syngeneic FVB/N mice with intracranial grafts of 2341luc were tested for effects of BRAFV600E and MEK inhibitor treatments, with bioluminescence imaging up to 14-days after start of treatment and survival analysis as primary indicators of inhibitor activity. Intracranial injected tumor cells consistently generated high-grade glioma-like tumors in syngeneic mice. Intraperitoneal daily delivery of BRAFV600E inhibitor dabrafenib only transiently suppressed MAPK signaling, and rather increased Akt signaling and failed to extend survival for mice with intracranial 2341luc tumor. MEK inhibitor trametinib delivered by oral gavage daily suppressed MAPK pathway more effectively and had a more durable anti-growth effect than dabrafenib as well as a significant survival benefit. Compared with either agent alone, combined BRAFV600E and MEK inhibitor treatment was more effective in reducing tumor growth and extending animal subject survival, as corresponding to sustained MAPK pathway inhibition. Results derived from the 2341luc engraftment model application have clinical implications for the management of BRAFV600E glioma

    Diabetes causes marked inhibition of mitochondrial metabolism in pancreatic β-cells

    Get PDF
    Diabetes is a global health problem caused primarily by the inability of pancreatic β-cells to secrete adequate levels of insulin. The molecular mechanisms underlying the progressive failure of β-cells to respond to glucose in type-2 diabetes remain unresolved. Using a combination of transcriptomics and proteomics, we find significant dysregulation of major metabolic pathways in islets of diabetic βV59M mice, a non-obese, eulipidaemic diabetes model. Multiple genes/proteins involved in glycolysis/gluconeogenesis are upregulated, whereas those involved in oxidative phosphorylation are downregulated. In isolated islets, glucose-induced increases in NADH and ATP are impaired and both oxidative and glycolytic glucose metabolism are reduced. INS-1 β-cells cultured chronically at high glucose show similar changes in protein expression and reduced glucose-stimulated oxygen consumption: targeted metabolomics reveals impaired metabolism. These data indicate hyperglycaemia induces metabolic changes in β-cells that markedly reduce mitochondrial metabolism and ATP synthesis. We propose this underlies the progressive failure of β-cells in diabetes.Peer reviewe

    DUNE: The Dark Universe Explorer

    Get PDF
    Understanding the nature of Dark Matter and Dark Energy is one of the most pressing issues in cosmology and fundamental physics. The purpose of the DUNE (Dark UNiverse Explorer) mission is to study these two cosmological components with high precision, using a space-based weak lensing survey as its primary science driver. Weak lensing provides a measure of the distribution of dark matter in the universe and of the impact of dark energy on the growth of structures. DUNE will also include a complementary supernovae survey to measure the expansion history of the universe, thus giving independent additional constraints on dark energy. The baseline concept consists of a 1.2m telescope with a 0.5 square degree optical CCD camera. It is designed to be fast with reduced risks and costs, and to take advantage of the synergy between ground-based and space observations. Stringent requirements for weak lensing systematics were shown to be achievable with the baseline concept. This will allow DUNE to place strong constraints on cosmological parameters, including the equation of state parameter of the dark energy and its evolution from redshift 0 to 1. DUNE is the subject of an ongoing study led by the French Space Agency (CNES), and is being proposed for ESA's Cosmic Vision programme

    First Results on In-Beam gamma Spectroscopy of Neutron-Rich Na and Mg Isotopes at REX-ISOLDE

    Full text link
    After the successful commissioning of the radioactive beam experiment at ISOLDE (REX-ISOLDE) - an accelerator for exotic nuclei produced by ISOLDE - first physics experiments using these beams were performed. Initial experiments focused on the region of deformation in the vicinity of the neutron-rich Na and Mg isotopes. Preliminary results show the high potential and physics opportunities offered by the exotic isotope accelerator REX in conjunction with the modern Germanium gamma spectrometer MINIBALL.Comment: 7 pages, RNB6 conference contributio

    Mycobacterium tuberculosis Complex Mycobacteria as Amoeba-Resistant Organisms

    Get PDF
    International audienceBackground: Most environmental non-tuberculous mycobacteria have been demonstrated to invade amoebal trophozoites and cysts, but such relationships are largely unknown for members of the Mycobacterium tuberculosis complex. An environmental source has been proposed for the animal Mycobacterium bovis and the human Mycobacterium canettii.Methodology/Principal Findings: Using optic and electron microscopy and co-culture methods, we observed that 89±0.6% of M. canettii, 12.4±0.3% of M. tuberculosis, 11.7±2% of M. bovis and 11.2±0.5% of Mycobacterium avium control organisms were phagocytized by Acanthamoeba polyphaga, a ratio significantly higher for M. canettii (P = 0.03), correlating with the significantly larger size of M. canetti organisms (P = 0.035). The percentage of intraamoebal mycobacteria surviving into cytoplasmic vacuoles was 32±2% for M. canettii, 26±1% for M. tuberculosis, 28±2% for M. bovis and 36±2% for M. avium (P = 0.57). M. tuberculosis, M. bovis and M. avium mycobacteria were further entrapped within the double wall of <1% amoebal cysts, but no M. canettii organisms were observed in amoebal cysts. The number of intracystic mycobacteria was significantly (P = 10−6) higher for M. avium than for the M. tuberculosis complex, and sub-culturing intracystic mycobacteria yielded significantly more (P = 0.02) M. avium organisms (34×104 CFU/mL) than M. tuberculosis (42×101 CFU/mL) and M. bovis (35×101 CFU/mL) in the presence of a washing fluid free of mycobacteria. Mycobacteria survived in the cysts for up to 18 days and cysts protected M. tuberculosis organisms against mycobactericidal 5 mg/mL streptomycin and 2.5% glutaraldehyde.Conclusions/Significance: These data indicate that M. tuberculosis complex organisms are amoeba-resistant organisms, as previously demonstrated for non-tuberculous, environmental mycobacteria. Intercystic survival of tuberculous mycobacteria, except for M. canettii, protect them against biocides and could play a role in their life cycle

    Thermal stratification drives movement of a coastal apex predator

    Get PDF
    A characterization of the thermal ecology of fishes is needed to better understand changes in ecosystems and species distributions arising from global warming. The movement of wild animals during changing environmental conditions provides essential information to help predict the future thermal response of large marine predators. We used acoustic telemetry to monitor the vertical movement activity of the common dentex (Dentex dentex), a Mediterranean coastal predator, in relation to the oscillations of the seasonal thermocline during two summer periods in the Medes Islands marine reserve (NW Mediterranean Sea). During the summer stratification period, the common dentex presented a clear preference for the warm suprathermoclinal layer, and adjusted their vertical movements following the depth changes of the thermocline. The same preference was also observed during the night, when fish were less active. Due to this behaviour, we hypothesize that inter-annual thermal oscillations and the predicted lengthening of summer conditions will have a significant positive impact on the metabolic efficiency, activity levels, and population dynamics of this species, particularly in its northern limit of distribution. These changes in the dynamics of an ecosystem’s keystone predator might cascade down to lower trophic levels, potentially re-defining the coastal fish communities of the futureVersión del editor2,92

    Milk exosomes: beyond dietary microRNAs

    Get PDF
    Extracellular vesicles deliver a variety of cargos to recipient cells, including the delivery of cargos in dietary vesicles from bovine milk to non-bovine species. The rate of discovery in this important line of research is slowed by a controversy whether the delivery and bioactivity of a single class of vesicle cargos, microRNAs, are real or not. This opinion paper argues that the evidence in support of the bioavailability of microRNAs encapsulated in dietary exosomes outweighs the evidence produced by scholars doubting that phenomenon is real. Importantly, this paper posits that the time is ripe to look beyond microRNA cargos and pursue innovative pathways through which dietary exosomes alter metabolism. Here, we highlight potentially fruitful lines of exploration
    • …
    corecore