3,399 research outputs found
A Contour Integral Representation for the Dual Five-Point Function and a Symmetry of the Genus Four Surface in R6
The invention of the "dual resonance model" N-point functions BN motivated
the development of current string theory. The simplest of these models, the
four-point function B4, is the classical Euler Beta function. Many standard
methods of complex analysis in a single variable have been applied to elucidate
the properties of the Euler Beta function, leading, for example, to analytic
continuation formulas such as the contour-integral representation obtained by
Pochhammer in 1890. Here we explore the geometry underlying the dual five-point
function B5, the simplest generalization of the Euler Beta function. Analyzing
the B5 integrand leads to a polyhedral structure for the five-crosscap surface,
embedded in RP5, that has 12 pentagonal faces and a symmetry group of order 120
in PGL(6). We find a Pochhammer-like representation for B5 that is a contour
integral along a surface of genus five. The symmetric embedding of the
five-crosscap surface in RP5 is doubly covered by a symmetric embedding of the
surface of genus four in R6 that has a polyhedral structure with 24 pentagonal
faces and a symmetry group of order 240 in O(6). The methods appear
generalizable to all N, and the resulting structures seem to be related to
associahedra in arbitrary dimensions.Comment: 43 pages and 44 figure
Dynamic Delegation: Shared, Hierarchical, and Deindividualized Leadership in Extreme Action Teams
This paper examines the leadership of extreme action teamsâteams whose highly skilled members cooperate to perform urgent, unpredictable, interdependent, and highly consequential tasks while simultaneously coping with frequent changes in team composition and training their teams\u27 novice members. Our qualitative investigation of the leadership of extreme action medical teams in an emergency trauma center revealed a hierarchical, deindividualized system of shared leadership. At the heart of this system is dynamic delegation: senior leaders\u27 rapid and repeated delegation of the active leadership role to and withdrawal of the active leadership role from more junior leaders of the team. Our findings suggest that dynamic delegation enhances extreme action teams\u27 ability to perform reliably while also building their novice team members\u27 skills. We highlight the contingencies that guide senior leaders\u27 delegation and withdrawal of the active leadership role, as well as the values and structures that motivate and enable the shared, ongoing practice of dynamic delegation. Further, we suggest that extreme action teams and other âimprovisationalâ organizational units may achieve swift coordination and reliable performance by melding hierarchical and bureaucratic role-based structures with flexibility-enhancing processes. The insights emerging from our findings at once extend and challenge prior leadership theory and research, paving the way for further theory development and research on team leadership in dynamic settings
Understanding studentsâ motivation towards proactive career behaviours through goal-setting theory and the job demandsâresources model
The graduate labour market is highly competitive but little is known about why students vary in their development of employability. This study contributes to the literature by applying goal-setting theory and the job demandsâresources model to investigate how motivational processes influence studentsâ proactive career behaviours. We tested four hypotheses using structural equation modelling and moderation/mediation analysis using a nested model approach; 432 undergraduates from 21 UK universities participated in this cross-sectional study. The results showed that students higher in mastery approach had greater perceived employability mediated by two proactive career behaviours (skill development and network building). Studentsâ career goal commitment was associated with all four proactive career behaviours (career planning, skill development, career consultation and network building). Studentsâ academic and employment workloads did not negatively impact their proactive career behaviours. University tutors and career services should therefore encourage students to set challenging career goals that reflect mastery approach
Cardiac resynchronization therapy restores optimal atrioventricular mechanical timing in heart failure patients with ventricular conduction delay
AbstractObjectivesWe characterized the relationship between systolic ventricular function and left ventricular (LV) end-diastolic pressure (LVEDP) in patients with heart failure (HF) and baseline asynchrony during ventricular stimulation.BackgroundThe role of preload in the systolic performance improvement that can be obtained in HF patients with LV stimulation is uncertain.MethodsWe measured the maximum rate of increase of LV pressure, LVEDP, aortic pulse pressure (PP) and the atrioventricular mechanical latency (AVL) between left atrial systole and LV pressure onset in 39 patients with HF. Two subgroups were identified: âresponderâ if PP improved, or ânonresponder.âResultsMaximum hemodynamic improvement occurred at an atrioventricular (AV) delay that did not decrease LVEDP. Left ventricular and biventricular (BV) stimulation increased systolic hemodynamics significantly, despite no significant increase in LVEDP. All parameters decreased when the LVEDP was decreased by shorter AV delay. Left ventricular and BV stimulation provided better hemodynamics than right ventricular (RV) stimulation. For the nonresponder subgroup, systolic hemodynamics only worsened during AV delay shortening. For the responder subgroup, optimum PP was achieved when AVL was near zero.ConclusionsRestoration of optimal left atrial-ventricular mechanical timing partly contributes to the hemodynamic improvements observed in this patient subgroup. However, preload alone cannot explain the differences seen between RV and BV stimulation and the contradictory PP decreases even at maximal preload in the nonresponder subgroup. These results may be explained by a site-dependent mechanism such as the degree of ventricular synchrony. Caution should be taken in these patients when optimizing AV delays using echocardiography techniques that focus on LV inflow
Long-Term (10-Year) Gastrointestinal and Genitourinary Toxicity after Treatment with External Beam Radiotherapy, Radical Prostatectomy, or Brachytherapy for Prostate Cancer
Objective.To examine gastrointestinal (GI) and genitourinary (GU) toxicity profiles of patients treated in 1999 with external beam radiotherapy (RT), prostate interstitial brachytherapy (PI) or radical prostatectomy (RP). Methods. TThe records of 525 patients treated in 1999 were reviewed to evaluate toxicity. Late GI and GU morbidities were graded according to the RTOG late morbidity criteria. Other factors examined were patient age, BMI, smoking history, and medical co-morbidities. Due to the low event rate for late GU and GI toxicities, a competing risk regression (CRR) analysis was done with death as the competing event. Results. Median follow-up time was 8.5 years. On CRR univariate analysis, only the presence of DM was significantly associated with GU toxicity grade >2 (P = 0.43, HR 2.35, 95% Cl = 1.03â5.39). On univariate analysis, RT and DM were significantly associated with late GI toxicity. On multivariable analysis, both variables remained significant (RT: P = 0.038, HR = 4.71, CI = 1.09â20.3; DM: P = 0.008, HR = 3.81, 95% Cl = 1.42â10.2). Conclusions. Late effects occur with all treatment modalities. The presence of DM at the time of treatment was significantly associated with worse late GI and GU toxicity. RT was significantly associated with worse late GI toxicity compared to PI and RP
Genetic control of root architectural plasticity in maize
© 2020 The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. Root phenotypes regulate soil resource acquisition; however, their genetic control and phenotypic plasticity are poorly understood. We hypothesized that the responses of root architectural phenes to water deficit (stress plasticity) and different environments (environmental plasticity) are under genetic control and that these loci are distinct. Root architectural phenes were phenotyped in the field using a large maize association panel with and without water deficit stress for three seasons in Arizona and without water deficit stress for four seasons in South Africa. All root phenes were plastic and varied in their plastic response. We identified candidate genes associated with stress and environmental plasticity and candidate genes associated with phenes in well-watered conditions in South Africa and in well-watered and water-stress conditions in Arizona. Few candidate genes for plasticity overlapped with those for phenes expressed under each condition. Our results suggest that phenotypic plasticity is highly quantitative, and plasticity loci are distinct from loci that control phene expression in stress and non-stress, which poses a challenge for breeding programs. To make these loci more accessible to the wider research community, we developed a public online resource that will allow for further experimental validation towards understanding the genetic control underlying phenotypic plasticity
Exome-wide association study of pancreatic cancer risk
We conducted a case-control exome-wide association study to discover germline variants in coding regions that affect risk for pancreatic cancer, combining data from 5 studies. We analyzed exome and genome sequencing data from 437 patients with pancreatic cancer (cases) and 1922 individuals not known to have cancer (controls). In the primary analysis, BRCA2 had the strongest enrichment for rare inactivating variants (17/437 cases vs 3/1922 controls) (P=3.27x10(-6); exome-wide statistical significance threshold P<2.5x10(-6)). Cases had more rare inactivating variants in DNA repair genes than controls, even after excluding 13 genes known to predispose to pancreatic cancer (adjusted odds ratio, 1.35, P=.045). At the suggestive threshold (P<.001), 6 genes were enriched for rare damaging variants (UHMK1, AP1G2, DNTA, CHST6, FGFR3, and EPHA1) and 7 genes had associations with pancreatic cancer risk, based on the sequence-kernel association test. We confirmed variants in BRCA2 as the most common high-penetrant genetic factor associated with pancreatic cancer and we also identified candidate pancreatic cancer genes. Large collaborations and novel approaches are needed to overcome the genetic heterogeneity of pancreatic cancer predisposition
CfAIR2: Near Infrared Light Curves of 94 Type Ia Supernovae
CfAIR2 is a large homogeneously reduced set of near-infrared (NIR) light
curves for Type Ia supernovae (SN Ia) obtained with the 1.3m Peters Automated
InfraRed Imaging TELescope (PAIRITEL). This data set includes 4607 measurements
of 94 SN Ia and 4 additional SN Iax observed from 2005-2011 at the Fred
Lawrence Whipple Observatory on Mount Hopkins, Arizona. CfAIR2 includes JHKs
photometric measurements for 88 normal and 6 spectroscopically peculiar SN Ia
in the nearby universe, with a median redshift of z~0.021 for the normal SN Ia.
CfAIR2 data span the range from -13 days to +127 days from B-band maximum. More
than half of the light curves begin before the time of maximum and the coverage
typically contains ~13-18 epochs of observation, depending on the filter. We
present extensive tests that verify the fidelity of the CfAIR2 data pipeline,
including comparison to the excellent data of the Carnegie Supernova Project.
CfAIR2 contributes to a firm local anchor for supernova cosmology studies in
the NIR. Because SN Ia are more nearly standard candles in the NIR and are less
vulnerable to the vexing problems of extinction by dust, CfAIR2 will help the
supernova cosmology community develop more precise and accurate extragalactic
distance probes to improve our knowledge of cosmological parameters, including
dark energy and its potential time variation.Comment: 31 pages, 15 figures, 10 tables. Accepted to ApJS. v2 modified to
more closely match journal versio
The global carbon budget 1959-2011
Accurate assessments of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. Finally, the global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms. For the last decade available (2002â2011), EFF was 8.3 ± 0.4 PgC yrâ1, ELUC 1.0 ± 0.5 PgC yrâ1, GATM 4.3 ± 0.1PgC yrâ1, SOCEAN 2.5 ± 0.5 PgC yrâ1, and SLAND 2.6 ± 0.8 PgC yrâ1. For year 2011 alone, EFF was 9.5 ± 0.5 PgC yrâ1, 3.0 percent above 2010, reflecting a continued trend in these emissions; ELUC was 0.9 ± 0.5 PgC yrâ1, approximately constant throughout the decade; GATM was 3.6 ± 0.2 PgC yrâ1, SOCEAN was 2.7 ± 0.5 PgC yrâ1, and SLAND was 4.1 ± 0.9 PgC yrâ1. GATM was low in 2011 compared to the 2002â2011 average because of a high uptake by the land probably in response to natural climate variability associated to La Niña conditions in the Pacific Ocean. The global atmospheric CO2 concentration reached 391.31 ± 0.13 ppm at the end of year 2011. We estimate that EFF will have increased by 2.6% (1.9â3.5%) in 2012 based on projections of gross world product and recent changes in the carbon intensity of the economy. All uncertainties are reported as ±1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future
Stunning and Right Ventricular Dysfunction Is Induced by Coronary Balloon Occlusion and Rapid Pacing in Humans: Insights From Right Ventricular Conductance Catheter Studies
BACKGROUND:
We sought to determine whether right ventricular stunning could be detected after supply (during coronary balloon occlusion [BO]) and supply/demand ischemia (induced by rapid pacing [RP] during transcatheter aortic valve replacement) in humans.
METHODS AND RESULTS:
Ten subjects with single-vessel right coronary artery disease undergoing percutaneous coronary intervention with normal ventricular function were studied in the BO group. Ten subjects undergoing transfemoral transcatheter aortic valve replacement were studied in the RP group. In both, a conductance catheter was placed into the right ventricle, and pressure volume loops were recorded at baseline and for intervals over 15 minutes after a low-pressure BO for 1 minute or a cumulative duration of RP for up to 1 minute. Ischemia-induced diastolic dysfunction was seen 1 minute after RP (end-diastolic pressure [mm Hg]: 8.1±4.2 versus 12.1±4.1, P<0.001) and BO (end-diastolic pressure [mm Hg]: 8.1±4.0 versus 8.7±4.0, P=0.03). Impairment of systolic and diastolic function after BO remained at 15-minutes recovery (ejection fraction [%]: 55.7±9.0 versus 47.8±6.3, P<0.01; end-diastolic pressure [mm Hg]: 8.1±4.0 versus 9.2±3.9, P<0.01). Persistent diastolic dysfunction was also evident in the RP group at 15-minutes recovery (end-diastolic pressure [mm Hg]: 8.1±4.1 versus 9.9±4.4, P=0.03) and there was also sustained impairment of load-independent indices of systolic function at 15 minutes after RP (end-systolic elastance and ventriculo-arterial coupling [mm Hg/mL]: 1.25±0.31 versus 0.85±0.43, P<0.01).
CONCLUSIONS:
RP and right coronary artery balloon occlusion both cause ischemic right ventricular dysfunction with stunning observed later during the procedure. This may have intraoperative implications in patients without right ventricular functional reserve
- âŠ