49 research outputs found

    TRIB1 (tribbles pseudokinase 1)

    Get PDF
    Review on TRIB1, with data on DNA, on the protein encoded, and where the gene is implicated

    Human tribbles-1 controls proliferation and chemotaxis of smooth muscle cells via MAPK signaling pathways

    Get PDF
    Migration and proliferation of smooth muscle cells are key to a number of physiological and pathological processes, including wound healing and the narrowing of the vessel wall.Previous work has shown links between inflammatory stimuli and vascular smooth muscle cell proliferation and migration through mitogen activated protein kinase (MAPK) activation, though the molecular mechanisms of this process are poorly understood. Here we report that tribbles-1, a recently described modulator of MAPK activation controls vascular smooth muscle cell proliferation and chemotaxis via the Jun Kinase pathway. Our findings demonstrate that this regulation takes place via direct interactions between tribbles-1 and MKK4/SEK1, a Jun activator kinase. The activity of this kinase is dependent on tribbles-1 levels, whilst the activation and the expression of MKK4/SEK1 is not. In addition, tribbles-1 expression is elevated in human atherosclerotic arteries compared to non-atherosclerotic controls, suggesting that this protein may pay a role in disease in vivo. In summary, the data presented here suggest an important regulatory role for trb-1 in vascular smooth muscle cell biology

    Identification of 34 Novel Proinflammatory Proteins in a Genome-Wide Macrophage Functional Screen

    Get PDF
    Signal transduction pathways activated by Toll-like Receptors and the IL-1 family of cytokines are fundamental to mounting an innate immune response and thus to clearing pathogens and promoting wound healing. Whilst mechanistic understanding of the regulation of innate signalling pathways has advanced considerably in recent years, there are still a number of critical controllers to be discovered. In order to characterise novel regulators of macrophage inflammation, we have carried out an extensive, cDNA-based forward genetic screen and identified 34 novel activators, based on their ability to induce the expression of cxcl2. Many are physiologically expressed in macrophages, although the majority of genes uncovered in our screen have not previously been linked to innate immunity. We show that expression of particular activators has profound but distinct impacts on LPS-induced inflammatory gene expression, including switch-type, amplifier and sensitiser behaviours. Furthermore, the novel genes identified here interact with the canonical inflammatory signalling network via specific mechanisms, as demonstrated by the use of dominant negative forms of IL1/TLR signalling mediators

    TMEM203 is a binding partner and regulator of STING-mediated inflammatory signaling in macrophages

    Get PDF
    Regulation of IFN signaling is critical in host recognition and response to pathogens while its dysregulation underlies the pathogenesis of several chronic diseases. STimulator of IFN Genes (STING) has been identified as a critical mediator of IFN inducing innate immune pathways, but little is known about direct coregulators of this protein. We report here that TMEM203, a conserved putative transmembrane protein, is an intracellular regulator of STING-mediated signaling. We show that TMEM203 interacts, functionally cooperates, and comigrates with STING following cell stimulation, which in turn leads to the activation of the kinase TBK1, and the IRF3 transcription factor. This induces target genes in macrophages, including IFN-β. Using Tmem203 knockout bone marrow-derived macrophages and transient knockdown of TMEM203 in human monocyte-derived macrophages, we show that TMEM203 protein is required for cGAMPinduced STING activation. Unlike STING, TMEM203 mRNA levels are elevated in T cells from patients with systemic lupus erythematosus, a disease characterized by the overexpression of type I interferons. Moreover, TMEM203 mRNA levels are associated with disease activity, as assessed by serum levels of the complement protein C3. Identification of TMEM203 sheds light into the control of STING-mediated innate immune responses, providing a potential novel mechanism for therapeutic interventions in STING-associated inflammatory diseases

    Pilot analysis of the usefulness of mortality risk score systems at resuscitated patients

    Get PDF
    Introduction: Sudden cardiac death is one of the most significant cardiovascular causes of death worldwide. Although there have been immense methodological and technical advances in the field of cardiopulmonary resuscitation and following intensive care in the last decade, currently there are only a few validated risk-stratification scoring systems for the quick and reliable estimation of the mortality risk of these patients at the time of admission to the intensive care unit. Objective: Our aim was to correlate the mortality prediction risk points calculated by CardShock Risk Score (CSRS) and modified (m) CSRS based on the admission data of the post-cardiac arrest syndrome (PCAS) patients. Methods: The medical records of 172 out-of-hospital resuscitated cardiac arrest patients, who were admitted at the Heart and Vascular Centre of Semmelweis University, were screened retrospectively. Out of the 172 selected patients, 123 were eligible for inclusion to calculate CSRS and mCSRS. Based on CSRS score, we generated three different groups of patients, with scores 1 to 3, 4 to 6, and 7+, respectively. Mortality data of the groups were compared by log-rank test. Results: Mean age of the patients was 63.6 years (69% male), the cause of sudden cardiac death was acut coronary syndrome in 80% of the cases. The early and late mortality was predicted by neurological status, serum lactate level, renal function, initial rhythm, and the need of catecholamines. Using mCSRS, a significant survival difference was proven in between the groups "1-3" vs "4-6" (p Conclusion: Compared to the CSRS, the mCSRS expanded with the 2 additional weighting points differentiates more specifically the low-moderate and high survival groups in the PCAS patient population treated in our institute.Peer reviewe

    Myeloid Tribbles 1 induces early atherosclerosis via enhanced foam cell expansion.

    Get PDF
    Macrophages drive atherosclerotic plaque progression and rupture; hence, attenuating their atherosclerosis-inducing properties holds promise for reducing coronary heart disease (CHD). Recent studies in mouse models have demonstrated that Tribbles 1 (Trib1) regulates macrophage phenotype and shows that Trib1 deficiency increases plasma cholesterol and triglyceride levels, suggesting that reduced TRIB1 expression mediates the strong genetic association between the TRIB1 locus and increased CHD risk in man. However, we report here that myeloid-specific Trib1 (mTrib1) deficiency reduces early atheroma formation and that mTrib1 transgene expression increases atherogenesis. Mechanistically, mTrib1 increased macrophage lipid accumulation and the expression of a critical receptor (OLR1), promoting oxidized low-density lipoprotein uptake and the formation of lipid-laden foam cells. As TRIB1 and OLR1 RNA levels were also strongly correlated in human macrophages, we suggest that a conserved, TRIB1-mediated mechanism drives foam cell formation in atherosclerotic plaque and that inhibiting mTRIB1 could be used therapeutically to reduce CHD

    Highlights of the 2nd International Symposium on Tribbles and Diseases: Tribbles tremble in therapeutics for immunity, metabolism, fundamental cell biology and cancer

    Get PDF
    The Tribbles (TRIB) family of pseudokinase proteins has been shown to play key roles in cell cycle, metabolic diseases, chronic inflammatory disease, and cancer development. A better understanding of the mechanisms of TRIB pseudokinases could provide new insights for disease development and help promote TRIB proteins as novel therapeutic targets for drug discovery. At the 2nd International Symposium on Tribbles and Diseases held on May 7‒9, 2018 in Beijing, China, a group of leading Tribbles scientists reported their findings and ongoing studies about the effects of the different TRIB proteins in the areas of immunity, metabolism, fundamental cell biology and cancer. Here, we summarize important and insightful overviews from 4 keynote lectures, 13 plenary lectures and 8 short talks that took place during this meeting. These findings may offer new insights for the understanding of the roles of TRIB pseudokinases in the development of various diseases

    Neutrophil microvesicles drive atherosclerosis by delivering <i>miR-155</i> to atheroprone endothelium

    Get PDF
    Neutrophils are implicated in the pathogenesis of atherosclerosis but are seldom detected in atherosclerotic plaques. We investigated whether neutrophil-derived microvesicles may influence arterial pathophysiology. Here we report that levels of circulating neutrophil microvesicles are enhanced by exposure to a high fat diet, a known risk factor for atherosclerosis. Neutrophil microvesicles accumulate at disease-prone regions of arteries exposed to disturbed flow patterns, and promote vascular inflammation and atherosclerosis in a murine model. Using cultured endothelial cells exposed to disturbed flow, we demonstrate that neutrophil microvesicles promote inflammatory gene expression by delivering miR-155, enhancing NF-κB activation. Similarly, neutrophil microvesicles increase miR-155 and enhance NF-κB at disease-prone sites of disturbed flow in vivo. Enhancement of atherosclerotic plaque formation and increase in macrophage content by neutrophil microvesicles is dependent on miR-155. We conclude that neutrophils contribute to vascular inflammation and atherogenesis through delivery of microvesicles carrying miR-155 to disease-prone regions

    Regulating STING in health and disease.

    Get PDF
    The presence of cytosolic double-stranded DNA molecules can trigger multiple innate immune signalling pathways which converge on the activation of an ER-resident innate immune adaptor named "STimulator of INterferon Genes (STING)". STING has been found to mediate type I interferon response downstream of cyclic dinucleotides and a number of DNA and RNA inducing signalling pathway. In addition to its physiological function, a rapidly increasing body of literature highlights the role for STING in human disease where variants of the STING proteins, as well as dysregulated STING signalling, have been implicated in a number of inflammatory diseases. This review will summarise the recent structural and functional findings of STING, and discuss how STING research has promoted the development of novel therapeutic approaches and experimental tools to improve treatment of tumour and autoimmune diseases

    Tribbles role in reproduction

    No full text
    Abstract Tribbles (TRIB) proteins, a family of evolutionary conserved psuedokinase proteins, modulate various signalling pathways within the cell. The regulatory roles of TRIB make them an important part of a number of biological processes ranging from cell proliferation to metabolism, immunity, inflammation and carcinogenesis. Innate immune system plays a pivotal role during the regulation of reproductive processes that allows successful creation of an offspring. Its involvement initiates from fertilization of the oocyte by spermatozoon and lasts throughout early embryonic development, pregnancy and labour. Therefore, there is a close cooperation between the reproductive system and the innate immune system. Evidence from our lab has demonstrated that improper activation of the innate immune system can reduce embryo implantation, thus leading to infertility. Therefore, control mechanisms regulating the innate immune system function can be critical for successful reproductive events
    corecore