16 research outputs found

    How to identify and characterize strongly correlated topological semimetals

    Full text link
    How strong correlations and topology interplay is a topic of great current interest. In this perspective paper, we focus on correlation-driven gapless phases. We take the time-reversal symmetric Weyl semimetal as an example because it is expected to have clear (albeit nonquantized) topological signatures in the Hall response and because the first strongly correlated representative, the noncentrosymmetric Weyl-Kondo semimetal Ce3_3Bi4_4Pd3_3, has recently been discovered. We summarize its key characteristics and use them to construct a prototype Weyl-Kondo semimetal temperature-magnetic field phase diagram. This allows for a substantiated assessment of other Weyl-Kondo semimetal candidate materials. We also put forward scaling plots of the intrinsic Berry-curvature-induced Hall response vs the inverse Weyl velocity -- a measure of correlation strength, and vs the inverse charge carrier concentration -- a measure of the proximity of Weyl nodes to the Fermi level. They suggest that the topological Hall response is maximized by strong correlations and small carrier concentrations. We hope that our work will guide the search for new Weyl-Kondo semimetals and correlated topological semimetals in general, and also trigger new theoretical work.Comment: 22 pages, 5 figures, 2 table

    Familial Longevity Is Marked by Lower Diurnal Salivary Cortisol Levels: The Leiden Longevity Study

    Get PDF
    BACKGROUND: Reported findings are inconsistent whether hypothalamic-pituitary-adrenal (HPA) signaling becomes hyperactive with increasing age, resulting in increasing levels of cortisol. Our previous research strongly suggests that offspring from long-lived families are biologically younger. In this study we assessed whether these offspring have a lower HPA axis activity, as measured by lower levels of cortisol and higher cortisol feedback sensitivity. METHODS: Salivary cortisol levels were measured at four time points within the first hour upon awakening and at two time points in the evening in a cohort comprising 149 offspring and 154 partners from the Leiden Longevity Study. A dexamethasone suppression test was performed as a measure of cortisol feedback sensitivity. Age, gender and body mass index, smoking and disease history (type 2 diabetes and hypertension) were considered as possible confounding factors. RESULTS: Salivary cortisol secretion was lower in offspring compared to partners in the morning (Area Under the Curve = 15.6 versus 17.1 nmol/L, respectively; p = 0.048) and in the evening (Area Under the Curve = 3.32 versus 3.82 nmol/L, respectively; p = 0.024). Salivary cortisol levels were not different after dexamethasone (0.5 mg) suppression between offspring and partners (4.82 versus 5.26 nmol/L, respectively; p = 0.28). CONCLUSION: Offspring of nonagenarian siblings are marked by a lower HPA axis activity (reflected by lower diurnal salivary cortisol levels), but not by a difference in cortisol feedback sensitivity. Further in-depth studies aimed at characterizing the HPA axis in offspring and partners are needed

    Global urban environmental change drives adaptation in white clover

    Get PDF
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale

    Interaction of Serotonin Transporter Gene-Linked Polymorphic Region and Stressful Life Events Predicts Cortisol Stress Response

    No full text
    There has been significant controversy whether stressful life events (SLEs) experienced over the lifespan may elevate the risk of depression in individuals who are homozygous for the short (S) allele of the repeat length polymorphism (5-HTTLPR) in the regulatory region of the serotonin transporter gene (SLC6A4), compared with individuals homozygous for the long (L) allele. On the basis of the hypothesis that age may be a critical variable, by which such a gene-by-environment interaction may be present in younger adults, but not in older adults and in children, aim of this study was to investigate the role of 5-HTTLPR and SLEs on the endocrine stress response in multiple age cohorts. A total of 115 children (8–12 years), 106 younger adults (18–31 years), and 99 older adults (54–68 years) were subjected to the Trier Social Stress Test (TSST) and structured interviews on SLEs. The TSST induced significant endocrine stress responses in all groups. There was a main effect of genotype in younger and older adults with individuals homozygous for the more active L allele showing a significantly larger cortisol response to the TSST than individuals carrying at least one of the low-expressing S alleles. As predicted, there was a significant interaction of 5-HTTLPR genotype and SLEs, but this interaction was only significant in younger adults and only when the measured SLEs had occurred during the first 5 years of life, suggesting that both age and the specific type of SLE has a role in whether a significant gene–environment interaction is observed

    Translational approaches to medication development

    No full text
    Alcohol accounts for major disability worldwide and available treatments are insufficient. A massive growth in the area of addiction neuroscience over the last several decades has not resulted in a corresponding expansion of treatment options available to patients. In this chapter, we describe our experience with building translational research programs aimed at developing novel pharmacotherapies for alcoholism. The narrative is based on experience and considerations made in the course of building these programs, and work on four mechanisms targeted by our libraries: cholinergic nicotine receptors, receptors for corticotropin-releasing hormone (CRH), neurokinin 1 (NK1) receptors for substance P (SP) and hypocretin/orexin receptors. Around this experience, we discuss issues we believe to be critical for successful translation of basic addiction neuroscience into treatments, and complementarities between academic and other actors that in our assessment need to be harnessed in order to bring treatments to the clinic

    Global urban environmental change drives adaptation in white clover

    No full text
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale
    corecore