32 research outputs found

    Gemin5 proteolysis reveals a novel motif to identify L protease targets

    Get PDF
    Translation of picornavirus RNA is governed by the internal ribosome entry site (IRES) element, directing the synthesis of a single polyprotein. Processing of the polyprotein is performed by viral proteases that also recognize as substrates host factors. Among these substrates are translation initiation factors and RNA-binding proteins whose cleavage is responsible for inactivation of cellular gene expression. Foot-and-mouth disease virus (FMDV) encodes two proteases, Lpro and 3Cpro. Widespread definition of Lpro targets suffers from the lack of a sufficient number of characterized substrates. Here, we report the proteolysis of the IRES-binding protein Gemin5 in FMDV-infected cells, but not in cells infected by other picornaviruses. Proteolysis was specifically associated with expression of Lpro, yielding two stable products, p85 and p57. In silico search of putative L targets within Gemin5 identified two sequences whose potential recognition was in agreement with proteolysis products observed in infected cells. Mutational analysis revealed a novel Lpro target sequence that included the RKAR motif. Confirming this result, the Fas-ligand Daxx, was proteolysed in FMDV-infected and Lpro-expressing cells. This protein carries a RRLR motif whose substitution to EELR abrogated Lpro recognition. Thus, the sequence (R)(R/K)(L/A)(R) defines a novel motif to identify putative targets of Lpro in host factors

    A Novel Diagnostic and Prognostic Score for Abdominal Aortic Aneurysms Based on D-Dimer and a Comprehensive Analysis of Myeloid Cell Parameters

    Get PDF
    The pathogenesis of abdominal aortic aneurysm (AAA) involves a central component of chronic inflammation which is predominantly mediated by myeloid cells. We hypothesized that the local inflammatory activity may be reflected in systemic alterations of neutrophil and monocyte populations as well as in soluble factors of myeloid cell activation and recruitment. To establish their marker potential, neutrophil and monocyte sub-sets were measured by flow cytometry in peripheral blood samples of 41 AAA patients and 38 healthy controls matched for age, sex, body mass index and smoking habit. Comparably, circulating factors reflecting neutrophil and monocyte activation and recruitment were assayed in plasma. Significantly elevated levels of CD16+ monocytes, activated neutrophils and newly released neutrophils were recorded for AAA patients compared with controls. In line, the monocyte chemoattractant C-C chemokine ligand 2 and myeloperoxidase were significantly increased in patients' plasma. The diagnostic value was highest for myeloperoxidase, a mediator which is released by activated neutrophils as well as CD16+ monocytes. Multivariable regression models using myeloid activation markers and routine laboratory parameters identified myeloperoxidase and D-dimer as strong independent correlates of AAA. These two biomarkers were combined to yield a diagnostic score which was subsequently challenged for confounders and confirmed in a validation cohort matched for cardiovascular disease. Importantly, the score was also found suited to predict rapid disease progression. In conclusion, D-dimer and myeloperoxidase represent two sensitive biomarkers of AAA which reflect distinct hallmarks (thrombus formation and inflammation) of the pathomechanism and, when combined, may serve as diagnostic and prognostic AAA score warranting further evaluation

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Direct functional interaction of initiation factor eIF4G with type 1 internal ribosomal entry sites

    No full text
    Viral internal ribosomal entry sites (IRESs) mediate end-independent translation initiation. There are 4 major structurally-distinct IRES groups: type 1 (e.g., poliovirus) and type 2 (e.g., encephalomyocarditis virus), which are dissimilar except for a Yn-Xm-AUG motif at their 3′ borders, type 3 (e.g., hepatitis C virus), and type 4 (dicistroviruses). Type 2–4 IRESs mediate initiation by distinct mechanisms that are nevertheless all based on specific noncanonical interactions with canonical components of the translation apparatus, such as eukaryotic initiation factor (eIF) 4G (type 2), 40S ribosomal subunits (types 3 and 4), and eIF3 (type 3). The mechanism of initiation on type 1 IRESs is unknown. We now report that domain V of type 1 IRESs, which is adjacent to the Yn-Xm-AUG motif, specifically interacts with the central domain of eIF4G. The position and orientation of eIF4G relative to the Yn-Xm-AUG motif is analogous in type 1 and 2 IRESs. eIF4G promotes recruitment of eIF4A to type 1 IRESs, and together, eIF4G and eIF4A induce conformational changes at their 3′ borders. The ability of mutant type 1 IRESs to bind eIF4G/eIF4A correlated with their translational activity. These characteristics parallel the mechanism of initiation on type 2 IRESs, in which the key event is binding of eIF4G to the J–K domain adjacent to the Yn-Xm-AUG motif, which is enhanced by eIF4A. These data suggest that fundamental aspects of the mechanisms of initiation on these unrelated classes of IRESs are similar
    corecore