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Abstract The pathogenesis of abdominal aortic aneurysm (AAA) involves a central component of
chronic inflammation which is predominantly mediated by myeloid cells. We hypothe-
sized that the local inflammatory activity may be reflected in systemic alterations of
neutrophil and monocyte populations as well as in soluble factors of myeloid cell
activation and recruitment. To establish their marker potential, neutrophil and
monocyte sub-sets were measured by flow cytometry in peripheral blood samples
of 41 AAA patients and 38 healthy controls matched for age, sex, body mass index and
smoking habit. Comparably, circulating factors reflecting neutrophil and monocyte
activation and recruitment were assayed in plasma. Significantly elevated levels of
CD16þ monocytes, activated neutrophils and newly released neutrophils were
recorded for AAA patients compared with controls. In line, the monocyte chemoat-
tractant C-C chemokine ligand 2 and myeloperoxidase were significantly increased in
patients’ plasma. The diagnostic value was highest for myeloperoxidase, a mediator
which is released by activated neutrophils as well as CD16þ monocytes. Multivariable
regressionmodels usingmyeloid activationmarkers and routine laboratory parameters
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Introduction

Abdominal aortic aneurysm (AAA) represents a major cause
of cardiovascular mortality despite advancements in surgical
techniques. It is frequently asymptomatic, diagnosed inci-
dentally and associated with a high death rate at rupture.1

Simple low-cost biomarkers for early disease detection
would be beneficial in countries where ultrasound screening
for high-risk groups is not implemented. Importantly, prog-
nostic markers are of particular interest because rapid
expansion of small aneurysms is difficult to predict but
associated with a high risk of rupture.1 Blood-borne diag-
nostic parameters which have repeatedly shown association
with AAA are common biomarkers of cardiovascular disease
such as D-dimer, fibrinogen2,3 or C-reactive protein.4 Among
these, D-dimer was reported to be related to the occurrence
of aortic aneurysm independent of underlying atherosclero-
tic disease,5 to correlate with AAA and intraluminal throm-
bus (ILT) size6 and to predict aneurysm growth.7,8

Histologically, the AAA wall is characterized by destruc-
tion of the vascular media associated with loss of elastic
fibres and smooth muscle cells (SMCs).9 Prominent inflam-
matory infiltrates in the adventitia as well as the ILT exert
wall-weakening activity which is primarily attributed to
myeloid cells and their production of reactive oxygen species
(ROS) and proteolytic enzymes.10 Several substances in the
ILT and AAAwall which originate from activated neutrophils
and monocytes can be detected at increased levels in the
peripheral blood of AAA patients and have been investigated
for their biomarker potential. These include: extracellular
matrix-degrading enzymes such as cathepsins,11 matrix
metalloproteinases, elastase,10 neutrophil gelatinase-asso-
ciated lipocalin12 and inflammatory cytokines.13 In contrast
to these soluble factors, phenotypic alterations of the circu-
lating myeloid cell populations are largely unexplored in the
context of AAA. Monocytes form functionally distinct sub-
sets that are recognized based on their differential surface
expression of CD14 and CD16.14 There is a progressive
differentiation from classical (CD14þþ CD16�) via inter-
mediate (CD14þþ CD16þ) to non-classical (CD14þ
CD16þþ) monocytes.15 Classical monocytes were identified
as potent phagocytic cells16,17 with the capacity to down-
regulate the pro-inflammatory reactions of the two CD16þ
sub-sets.18 The non-classical population exhibited patrolling
behaviour maintaining vessel integrity,19,20 while inter-

mediate monocytes were proposed to have the highest
capacity for antigen presentation, angiogenesis and tissue
remodelling.16,17 Furthermore, intermediates showed the
highest propensity to form monocyte–platelet aggregates
(MPAs), which are of relevance to thrombotic disease.21

Increased levels of intermediate and non-classical mono-
cytes were found to be associated with a higher risk of
cardiovascular events22 as well as large AAAs.23,24

Comparably, the existence of neutrophil sub-sets with
distinct activation status and function has been proposed
which are defined by the expression of CD62L and CD16.25

Mature, quiescent circulating neutrophils are generally char-
acterized by a high level of both surface markers (CD16high

CD62Lhigh). The immature CD16low CD62Lhigh neutrophil
sub-set which is newly released from bone marrow is
marked by lower phagocytic activity and decreased ROS-
generating capability, while the activated CD16high CD62Llow

sub-set is strongly pro-inflammatory and exertsmain immu-
noregulatory functions.25,26 Both, activated as well as newly
released sub-sets are induced in endotoxaemia and sepsis,25

but relevant studies in other disease-specific contexts,
including AAA, are lacking. However, the interaction of
neutrophils with platelets has been shown to play an impor-
tant role in AAA pathogenesis, enhancing neutrophil recruit-
ment and activation.10

Based on the reports of neutrophil andmonocyte involve-
ment in AAA, we postulated that the state of chronic inflam-
mation is not restricted to the local AAA site but is reflected
in a systemic change in myeloid cell populations indicating
on-going leukocyte activation and recruitment. We thus
assessed the marker potential of circulating myeloid cell
sub-sets and their secreted factors in comparison to pre-
viously reported AAA parameters such as D-dimer. A diag-
nostic risk score was devised and challenged in a validation
cohort. Of particular interest, the risk score further proved
effective in predicting rapid disease progression.

Methods

Diagnostic Study Design
Weconducted an observational case–control study, adhering
to the principles of the Declaration of Helsinki and the
STROBE guidelines for reporting results. The study was
approved by the institutional ethics committee (license no.
1729/2014) and informed consent was obtained from

identified myeloperoxidase and D-dimer as strong independent correlates of AAA.
These two biomarkers were combined to yield a diagnostic score which was subse-
quently challenged for confounders and confirmed in a validation cohort matched for
cardiovascular disease. Importantly, the score was also found suited to predict rapid
disease progression. In conclusion, D-dimer and myeloperoxidase represent two
sensitive biomarkers of AAA which reflect distinct hallmarks (thrombus formation
and inflammation) of the pathomechanism and, when combined, may serve as
diagnostic and prognostic AAA score warranting further evaluation.
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participating patients at the Vienna General Hospital (2014–
2016). Morphometric AAA analysis was performed using
computed tomography angiography (CTA) images at study
inclusion. A control group was recruited from general sur-
gery, urology and ophthalmology patients (presenting for
routine check-ups) with ultrasound-confirmed absence of
AAA. Subjects with recent (< 1 year) tumour and/or che-
motherapy, systemic autoimmune or haematological disease
and organ transplant recipients were excluded. In the pre-
sent evaluation, data collected from 41 patients prior to
immanent elective surgical repair via open or endovascular
approach were compared with the control group (N ¼ 38),
which was matched in age, sex, body mass index and smok-
ing habit.

For validation of the diagnostic score, citrated plasma
samples collected at an independent institution (Leeds Gen-
eral Infirmary as part of the Leeds Aneurysm Development
Study, approved by the Leeds East Ethics Committee, Ref 03/
14227–31) were analysed which represented 63 AAA cases
and 63 controls, recruited from other medical and surgical
outpatient departments at the same hospital. All patients
received abdominal aortic ultrasound for confirmation of
diagnosis. For these samples, one-to-one matching was
performed for age (within 2 years), sex and the presence of
clinical cardiovascular disease (previous myocardial infarc-
tion, angina pectoris, peripheral vascular disease or cerebro-
vascular disease).

Prognostic Study Design
Based on the mentioned inclusion and exclusion criteria,
AAA patients without surgical indication were enrolled in a
longitudinal observational study (2014–2018) at the Vascu-
lar Surgery Department of the Medical University of Vienna,
with serial blood withdrawing and CTA analysis every 6
months. Thirty-three patients were assessed, with a total of
68 six-month monitoring periods.

Flow Cytometry of Myeloid Cell Populations
Blood was collected into hirudin containing tubes (Roche,
Basel, Switzerland) and fixed immediately with ThromboFix
solution (Beckman-Coulter, Indianapolis, Indiana, United
States) according to manufacturer’s instructions. After 2 to 7
hours at room temperature, leukocyte populations were
stained in whole blood using the following antibodies:
CD66b-FITC, CD62L-AF647, CD16-PE/Cy7, CD41-PB (BioLe-
gend, San Diego, California, United States) and CD54-PE
(Thermo Fisher Scientific, Waltham, Massachusetts, United
States) forneutrophil sub-sets;CD14-FITC, CD16-PE/Cy7,HLA-
DR-PE and CD41-PB (BioLegend) for monocyte sub-sets. 7-
AAD dye (Beckman-Coulter) was used to exclude non-viable
cells. Following erythrocyte lysis with RBC Lysis Buffer
(Thermo Fisher Scientific), samples were diluted and imme-
diately analysed with a Gallios flow cytometer (Beckman-
Coulter). Neutrophil sub-sets were evaluated as viable
CD66bþ cells and distinguished from eosinophils (CD16–).
Sub-set discriminationwas based on CD62L and CD16 expres-
sion levels (►Supplementary Figs. S1 and S2, available in the
online version), identifying mature, quiescent neutrophils as

CD16highCD62Lhigh, andtheactivatedneutrophilpopulationas
CD16high CD62Llow as opposed to newly released neutrophils
with CD16low CD62Lhigh surface expression. Monocyte sub-
sets were quantified from viable HLA-DRþ CD14þ cells using
CD14 and CD16 surface levels (►Supplementary Fig. S3,
available in the online version) for the distinction between
classical (CD14þþ CD16�), intermediate (CD14þþ CD16þ)
and non-classical (CD14þ CD16þþ) monocytes. Both, neutro-
phils and monocytes were additionally analysed for the pro-
portion of platelet (CD41þ) aggregates. A blood count was
performed using the same hirudin-treated blood sample on a
Sysmex XN-350 haemocytometer (Sysmex, Kobe, Japan)
which was applied to calculate absolute concentrations of
leukocyte sub-sets.

Since standard methods were applied to measure plasma
and tissue-released factors, the respective methods are
described in the ►Supplementary Methods (available in
the online version).

Statistical Evaluation
Data are generally given as median values and interquartile
range (IQR). Non-parametric tests were used for group
comparisons (Mann–Whitney U, Wilcoxon signed-rank
test) or correlations (Spearman’s r). Contingency tables and
chi-square test were applied for categorical variables. Recei-
ver operating characteristics (ROC) analysis served to eval-
uate the diagnostic or prognostic marker potential. These
analyses were performed with SPSS 24.0 software (IBM,
Armonk, New York, United States) and a significance level
of p < 0.05 was applied. Sample size calculation was based
on the previously reported frequency of CD16þ monocytes
in AAA patients and healthy controls23 with a 1.4-fold
difference in mean parameter levels at a high biological
variation (μ1 ¼ 11.0%, μ2 ¼ 15.1%, σ¼ 6.1%, α¼ 0.05, 1–β¼
0.80) and yielded a minimal sample size of 36 per group.
Missing values were generally below 5% and hence not
addressed in statistical analysis.

Logistic regression models were developed with R soft-
ware (R Core Team 2016, Vienna, Austria) using stepwise
backward elimination of insignificant variables and the
Akaike information criterion as the stopping criterion. The
resulting diagnostic model was internally validated, using
fivefold cross-validated predicted probabilities. The valida-
tion was repeated 100 times and results were averaged to
avoid dependence on a specific data split. The area under the
ROC curve was deduced from ROC analyses comparing the
predicted probabilities and the observed event status.
Finally, a coefficient of discrimination32 was computed as
the difference in average (cross-validated) predicted prob-
abilities between patients diagnosed with AAA and indivi-
duals without AAA.

The developed diagnostic score was further evaluated in
the original dataset by multivariable binary logistic regres-
sion including co-morbidities and patient medication as
categorical variables: coronary heart disease (CHD), anti-
platelet therapy, hypertension and/or anti-hypertensive
therapy, hyperlipidaemia and/or lipid-lowering therapy.
(Due to the inherent correlation of hypertension and
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hyperlipidaemia with their pertaining therapies, the com-
bined variables were applied.) The score was further char-
acterized in the above-mentioned, independent validation
set by ROC curve analysis (SPSS 24.0).

Results

Patient and Control Group Differ Significantly in the
Reported Haematological Biomarker D-dimer, in AAA-
Associated Co-Morbidities and Medication
Forty-one AAA patients and 38 control subjects were
included in the analysis. Groups were comparable in terms
of: sex distribution, age, smoking status and bodymass index
(►Tables 1, 2, 3). There were significant differences in the
diagnosis of hypertension (p ¼ 0.026) and prescription of
anti-hypertensive therapy (p ¼ 0.051), which were more
frequent in the AAA cohort. More aneurysm patients than
controls were affected by hyperlipidaemia (p ¼ 0.001) and
under lipid-lowering treatment (p < 0.001). The AAA group

had lower total cholesterol (p ¼ 0.037) and high-density
lipoprotein (p ¼ 0.030). The groups further differed signifi-
cantly in the occurrence of CHD (p ¼ 0.012), with AAA
patients having an almost threefold higher frequency of
anti-platelet drug use (p < 0.001). A higher cardiovascular
burden in the AAA groupwas also evidenced by the Framing-
ham Risk Score in per cent 10-year risk of general cardio-
vascular disease (p ¼ 0.026). Other co-morbidities such as
chronic obstructive pulmonary disease and nephropathy
(mainly renal cysts) showed a trend but no significant
elevation in the disease collective. Nevertheless, kidney
parameters indicated a poorer kidney function in AAA
patients: elevated blood urea nitrogen (p ¼ 0.001) and crea-
tinine (p ¼ 0.059) and reduced estimated glomerular filtra-
tion rate (p ¼ 0.045).

In the AAA patient group, the median maximum AAA
diameter reached 57 mm (range: 44–114 mm) with a med-
ian aneurysm length of 92 mm (38–147 mm). Regarding the
ILT, a median maximum thickness of 22 mm (5–45 mm) and
volume of 75 mm3 (2–347 mm3) was recorded (►Table 4).
Only 5 of 41 patients showed a concomitant thoracic aortic
aneurysm; the AAA formwas predominantly fusiform (63%).

In line with published studies,3 the plasma D-dimer
concentration (►Table 2) was highly increased in AAA
patients compared with controls (median: 1.30 μg/mL [IQR
¼ 1.68] vs. 0.47 μg/mL [IQR ¼ 0.49], p < 0.001) and corre-
lated with AAA maximum diameter (r ¼ 0.537, p ¼ 0.001)
and ILT maximum diameter (r ¼ 0.500, p ¼ 0.009).

AAA Patients Show a Higher Frequency of Activated
and Newly Released Neutrophils as well as CD16þ
Monocytes
The study focused on evaluating possible alterations in the
distribution of circulating neutrophil andmonocyte sub-sets
in AAA patients compared with controls. Activated neutro-
phils, marked by the loss of CD62L fluorescent signal inten-
sity (►Supplementary Figs. S1 and S2, available in the online
version), were significantly more prevalent in the AAA
patient group (►Table 5). The median number of activated
neutrophils in AAA patients (►Fig. 1C) was 31 � 106 cells/L
(IQR ¼ 24), while it was 21 � 106 cells/L (IQR ¼ 16) in the
healthy group, p ¼ 0.005. Regarding newly released neutro-
phils (►Fig. 1B), AAA patients had 38 � 106 cells/L (IQR
¼ 31) versus 31 � 106 cells/L (IQR ¼ 23) in the healthy
control group, p ¼ 0.020. A significant correlation was found
between the absolute concentration of circulating activated
and newly released neutrophils (Spearman’s r ¼ 0.584,
p < 0.001, ►Fig. 1F). The concentration of total neutrophils
(►Fig. 1A), the mature, quiescent sub-set (►Fig. 1D) and
neutrophil–platelet aggregates (►Fig. 1E) did not differ sig-
nificantly between the two groups.

Our analysis further revealed a higher median frequency
of CD16þ circulating monocytes of 18.8% (IQR ¼ 10.0) in the
AAA patient group compared with 16.0% (IQR ¼ 10.7) in the
control collective, p ¼ 0.039 (►Table 5,►Fig. 2F). The ratio of
CD16-/CD16þ monocytes was calculated as a measure of
monocyte activation and was significantly changed in AAA
patientswith amedianvalue of 4.33 (IQR ¼ 2.73) versus 5.24

Table 1 Patient and control demographics: categorical
variables

Characteristic Healthy (N ¼ 38) AAA (N ¼ 41) p-Value

N (%) N (%)

Sex 0.390

Female 5 (13.2) 3 (7.3)

Male 33 (86.8) 38 (92.7)

Smoker status

Never 8 (21.1) 4 (9.8) 0.160

Past 13 (34.2) 22 (53.7)

Current 16 (42.1) 14 (34.1)

Unknown 1 (2.6) 1 (2.4)

Hypertension 23 (60.5) 34 (82.9) 0.026

Hyperlipidaemia 11 (28.9) 27 (65.9) 0.001

Peripheral artery
disease

No 34 (89.5) 32 (78.0) 0.250

Yes 4 (10.5) 7 (17.1)

Unknown 0 (0.0) 2 (4.9)

Coronary heart
disease

4 (10.5) 14 (34.1) 0.012

Myocardial infarction 3 (7.9) 9 (22.0) 0.082

Stroke 0 (0.0) 3 (7.3) 0.236

Diabetes mellitus 4 (10.5) 9 (22.0) 0.171

COPD 5 (13.2) 13 (31.7) 0.050

Nephropathy/renal cysts

No 31 (81.6) 27 (65.9) 0.227

Yes 7 (18.4) 13 (31.7)

Unknown 0 (0.0) 1 (2.4)

AAA family history

No 34 (89.5) 34 (82.9) 0.236

Yes 4 (10.5) 4 (9.8)

Unknown 0 (0.0) 3 (7.3)

Abbreviations: AAA, abdominal aortic aneurysm; COPD, chronic
obstructive pulmonary disease.
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(IQR ¼ 4.80) in control individuals (p ¼ 0.039). The absolute
number ofmonocytes aswell as the three respective sub-sets
did not differ significantly between groups (►Fig. 2A–D).
Furthermore, the blood level of MPAs was not significantly
different between patients and controls (►Fig. 2E).

Plasma Factors Related to Myeloid Cell Activation and
Recruitment are Elevated in AAA Patients and Plasma
Myeloperoxidase Correlates with Tissue-Released
Protein from Aneurysm Wall and ILT
We screened plasma samples from 10 AAA patients and 10
control subjects using a multi-cytokine panel (myeloperox-
idase [MPO], eotaxin, macrophage inflammatory protein
[MIP]-1α, growth-regulated oncogene-α, interferon
gamma-inducible protein-10, interleukin-8, C-C chemokine
ligand 2 [CCL2], MIP-1β, RANTES and stromal cell-derived
factor-1α). Only plasma levels of MPO and CCL2 (also termed
monocyte chemoattractant protein 1) were significantly

increased in the AAA patients in the pilot analysis, so MPO
and CCL2 were prioritized for assessment in the entire
cohort. This difference was confirmed using enzyme-linked
immunosorbent assay (ELISA) for the total sample set. The
median CCL2 chemokine concentration (►Fig. 3A) in blood of
AAA patients was 183 pg/mL (IQR ¼ 45) as compared with
170 pg/mL (IQR ¼ 62) in the healthy controls, p ¼ 0.048. Of
note, the soluble MPO level (►Fig. 3B) was almost twice as
high among AAA patients compared with control subjects
(median: 13.3 ng/mL [IQR ¼ 13.1] vs. 7.7 ng/mL [IQR ¼ 3.6],
p < 0.001).

Based on the robust association of plasma MPO level with
AAA status, we investigated conditioned media from the
AAAwall (N ¼ 13) to see if the potential source of MPO was
indeed the AAA site. Compared with healthy aortic tissue
(N ¼ 13), more MPO was released from AAA wall samples
(median: 639 ng/mL [IQR ¼ 401] vs. 56 ng/mL [IQR ¼ 277],
p < 0.001). Of note, there was a linear correlation between

Table 2 Patient and control demographics: metric variables

Characteristic Healthy AAA p-Value

Median (Range) Median (Range)

Age [y] 67 (39–83) 71 (52–83) 0.705

Body mass index [kg/m2] 26.2 (20.7–40.1) 28.4 (17.8–34.1) 0.370

Median (IQR) Median (IQR)

White blood cells [�106/L] 5650 (2100) 6400 (2190) 0.114

Red blood cells [�1012/L] 4.70 (0.68) 4.52 (0.73) 0.441

Haemoglobin [g/dL] 14.2 (2.7) 14.6 (2.4) 0.543

Haematocrit [%] 41.6 (6.1) 41.5 (6.7) 0.669

Platelets [�109/L] 178.5 (91) 157 (80) 0.101

Lymphocytes [�106/L] 1641 (818) 1611 (989) 0.322

Monocytes [�106/L] 518 (292) 497 (356) 0.928

Neutrophils [�106/L] 3375 (1535) 3742 (1350) 0.217

C-reactive protein [mg/dL] 0.26 (0.46) 0.40 (0.43) 0.075

Fibrinogen - Clauss [mg/dL] 375 (90) 396 (143) 0.258

D-dimer [µg/mL] 0.47 (0.49) 1.30 (1.68) < 0.001

Lipoprotein (a) [nmol/L] 20.0 (39.0) 19.5 (115.0) 0.482

Triglycerides [mg/dL] 121 (73) 141 (59) 0.070

Total cholesterol [mg/dL] 198 (23) 170 (60) 0.037

LDL cholesterol [mg/dL] 119 (47) 93 (71) 0.171

HDL cholesterol [mg/dL] 54 (25) 50 (17) 0.030

Total cholesterol/HDL ratio 3.6 (2.3) 3.6 (1.4) 0.697

LDL/HDL ratio 2.2 (1.7) 2.0 (1.4) 0.996

FRS [risk factors] 0.86 (1.37) 1.13 (0.95) 0.064

FRS [%] 22.9 (23.8) 30.4 (25.7) 0.026

Creatinine [μg/dL] 0.94 (0.22) 1.02 (0.45) 0.059

Blood urea nitrogen [mg/dL] 15.1 (4.1) 17.8 (6.4) 0.001

eGFR [mL/min/1.73 m2] 84.7 (20.0) 76.0 (38.7) 0.045

Abbreviations: AAA, abdominal aortic aneurysm; eGFR, estimated glomerular filtration rate; FRS, Framingham Risk Score; HDL, high-density
lipoprotein; IQR, interquartile range; LDL, low-density lipoprotein.
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plasma and tissue-released MPO of patients whose aortic
wall had been analysed (Spearman’s coefficient r ¼ 0.620,
p < 0.001; ►Fig. 3C and D). Furthermore, tissue-released
and plasma MPO levels correlated significantly with AAA
maximum diameter: r ¼ 0.566, p ¼ 0.044 and r ¼ 0.391,
p ¼ 0.013, respectively (►Fig. 3E and F).

Plasma Myeloperoxidase and D-dimer Levels are
Independently Associatedwith AAA Status andmay be
Combined to Yield an Advanced Diagnostic Score
Next, a ROC analysis was performed using explorative vari-
ables which have shown significant differences between the

Table 3 Patient and control medication

Characteristic Healthy (N ¼ 38) AAA (N ¼ 41) p-Value

N (%) N (%)

Anti-platelet therapy 12 (31.6) 36 (87.8) < 0.001

Acetylsalicylic acid 11 (28.9) 36 (87.8) < 0.001

Clopidogrel 1 (2.6) 3 (7.3) 0.343

Prasugrel or Ticagrelor 0 (0.0) 2 (4.9) 0.386

Anticoagulation therapy 6 (15.8) 9 (22.0) 0.485

Anti-hypertensive therapy 23 (60.5) 33 (80.5) 0.051

ACE inhibitor 5 (13.2) 12 (29.3) 0.082

Angiotensin receptor blocker 10 (26.3) 16 (39.0) 0.230

Beta blocker 11 (28.9) 21 (51.2) 0.044

Calcium channel blocker 7 (18.4) 11 (26.8) 0.373

Nitrate 0 (0.0) 1 (2.4) 0.333

Diuretic 8 (21.1) 16 (39.0) 0.083

Lipid-lowering therapy 6 (15.8) 34 (82.9) < 0.001

Statins 6 (15.8) 33 (80.5) < 0.001

Diabetic medication 4 (10.5) 8 (19.5) 0.266

Insulin 1 (2.6) 1 (2.4) 0.957

Metformin 3 (7.9) 7 (17.1) 0.220

Hormones 3 (7.9) 6 (14.6) 0.346

Gout medication 4 (10.5) 6 (14.6) 0.583

Abbreviations: AAA, abdominal aortic aneurysm; ACE, angiotensin-converting enzyme.

Table 4 Aneurysm morphology

Characteristic Median Range

AAA maximum diameter [mm] 56.7 44.0–114.3

AAA length [mm] 92.3 37.5–147.0

ILT maximum diameter [mm] 21.6 4.8–45.3

ILT volume [mm3] 75 2–347

Characteristic N %

Aneurysm type

AAA only 36 87.8

AAA and TAA 5 12.2

AAA form

Saccular 9 22.0

Fusiform 26 63.4

Unknown 6 14.6

Circumference [%]

< 25 2 4.9

50 3 7.3

75 13 31.7

100 15 36.6

Unknown 8 19.5

Characteristic N %

ILT presence

Yes 33 80.5

Unknown 8 19.5

ILT coverage

Circular 15 36.6

Partial 17 41.5

Unknown 9 22.0

Abbreviations: AAA, abdominal aortic aneurysm; ILT, intraluminal
thrombus; TAA, thoracic aortic aneurysm.

Table 4 (Continued)
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subject collectives. Of these, the highest diagnostic marker
potential was seen with plasma MPO levels showing an area
under the curve (AUC) of 0.816, p < 0.001, as comparedwith
activated and newly released neutrophils (AUC ¼ 0.684,
p ¼ 0.005 and AUC ¼ 0.654, p ¼ 0.020, respectively), %
CD16þ monocytes (AUC ¼ 0.646, p ¼ 0.039) as well as
CCL2 (AUC ¼ 0.631, p ¼ 0.048).

A diagnostic logistic regression model was developed
including the following parameters: blood counts of total
neutrophils, quiescent neutrophils, activated neutrophils,
newly released neutrophils, total monocytes, the percentage
of CD16þ monocytes as well as plasma levels of D-dimer,
MPO and CCL2. After backward elimination, only D-dimer
(odds ratio: 3.96 and 95% confidence interval [95% CI]: 1.65–
12.81) and MPO (odds ratio: 1.23, 95% CI: 1.08–1.43) had
significant independent importance for AAA diagnosis and
were retained in the model. From the logistic model, a linear
score was derived, according to the estimated regression
coefficients, as ‘score’ ¼ –3.442 þ 1.375 �D-dimer þ 0.205 �

MPO. When compared with ROC analysis for MPO (AUC
¼ 0.816) and D-dimer (AUC ¼ 0.830) alone, the combined
score performed better (AUC ¼ 0.877) in discriminating
patients from healthy individuals (►Fig. 4A). Evaluation of

the dichotomized score (grouped into positive and negative
values) revealed a diagnostic sensitivity of 73% and specifi-
city of 80%. The score also showed a higher coefficient of
correlation (r ¼ 0.664, p < 0.001) than MPO (r ¼ 0.391,
p ¼ 0.013) and D-dimer (r ¼ 0.537, p ¼ 0.001) for maximal
AAA diameter (►Table 6), while D-dimer (r ¼ 0.687,
p < 0.001) was more closely correlated with ILT volume
than the calculated diagnostic score (r ¼ 0.450, p ¼ 0.031).

Myeloid Cell Parameters are Sensitive to Confounders
but the Diagnostic Score Identifies AAA Irrespective of
Co-Morbidities and Patient Medication
It was further of interest to evaluate whether the significant
difference in explorative parameters between AAA patients
and healthy controls was lost when the collectives were
matched for the presence or absence (retaining the larger
sample size) of a particular co-morbidity or medication
(►Supplementary Tables S1–S5, available in the online ver-
sion). The blood populations of activated and newly released
neutrophils were influenced by hyperlipidaemia and/or
statin therapy. Similarly, when the collectives were matched
for aspirin intake, the difference in neutrophil sub-set fre-
quency was lost. Hypertension and anti-hypertensive drugs

Table 5 Neutrophil and monocyte sub-set frequencies in peripheral blood of AAA patients and healthy control individuals

Parameter Healthy AAA p-Value

Neutrophil populations Median (IQR) Median (IQR)

Total neutrophils [�106/L] 3,375 (1,535) 3,742 (1,351) 0.217

Quiescent neutrophils [�106/L] 3,063 (1,400) 3,627 (1,344) 0.188

Newly released neutrophils [�106/L] 31 (23) 38 (31) 0.020

Activated neutrophils [�106/L] 21 (16) 31 (24) 0.005

Neutrophil-platelet aggregates [�106/L] 344 (410) 401 (562) 0.617

Quiescent neutrophils [%] 98.37 (0.99) 98.13 (1.20) 0.030

Newly released neutrophils [%] 0.92 (0.68) 1.09 (0.64) 0.079

Activated neutrophils [%] 0.62 (0.46) 0.87 (0.59) 0.030

Neutrophil-platelet aggregates [%] 11.10 (7.30) 12.40 (14.62) 0.737

Monocyte populations Median (IQR) Median (IQR)

Total monocytes [�106/L] 518 (292) 497 (356) 0.928

Classical monocytes [�106/L] 441 (277) 366 (256) 0.506

Intermediate monocytes [�106/L] 31 (41) 50 (48) 0.259

Non-classical monocytes [�106/L] 38 (44) 49 (51) 0.315

CD16þ monocytes [�106/L] 73 (70) 109 (91) 0.219

Monocyte-platelet aggregates [�106/L] 74 (73) 82 (79) 0.970

CD16-/CD16þ monocyte ratio 5.24 (4.80) 4.33 (2.73) 0.039

Classical monocytes [%] 83.97 (10.65) 81.22 (10.02) 0.039

Intermediate monocytes [%] 7.12 (4.72) 7.86 (3.79) 0.116

Non-classical monocytes [%] 7.21 (6.76) 9.99 (8.50) 0.060

CD16þ monocytes [%] 16.03 (10.65) 18.78 (10.02) 0.039

Monocyte–platelet aggregates [%] 14.34 (6.94) 16.09 (16.10) 0.888

Abbreviations: AAA, abdominal aortic aneurysm; IQR, interquartile range.
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Fig. 1 Distribution of neutrophil populations in peripheral blood of abdominal aortic aneurysm (AAA) patients and healthy controls. Boxplots
illustrate the absolute concentration of (A) total neutrophils, (B) the newly released, (C) activated or (D) mature, quiescent neutrophil sub-set as
well as (E) neutrophil–platelet aggregates. Group comparisons were performed by Mann–Whitney U test. (F) The linear correlation between
activated and newly released neutrophils is evaluated by scattergram and Spearman’s coefficient of correlation.

Fig. 2 Distribution of monocyte populations in peripheral blood of abdominal aortic aneurysm (AAA) patients and healthy controls. Boxplots
illustrate the absolute concentration of (A) total monocytes, (B) the classical, (C) intermediate or (D) non-classical monocyte sub-set as well as (E)
monocyte–platelet aggregates. Intermediate and non-classical monocytes were further combined to the group of CD16þmonocytes, and their
relative frequency is shown in (F). Group comparisons were performed by Mann–Whitney U test.
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Fig. 3 Increased plasma and tissue levels of soluble factors associated with myeloid cell activation. The boxplot comparison illustrates the
distribution of (A) plasma C-C chemokine ligand 2 (CCL2), (B) plasma myeloperoxidase (MPO) and (C) tissue MPO concentrations as measured by
enzyme-linked immunosorbent assay (ELISA) in samples of abdominal aortic aneurysm (AAA) patients and healthy controls. For tissue analysis,
sections from healthy and AAA aortic walls were incubated in medium overnight to release tissue-contained MPO. Group comparisons were
performed by Mann–Whitney U test. Correlations between (D) plasma and tissue-released MPO, as well as maximum AAA diameter and (E) tissue
MPO or (F) plasma MPO levels are shown in scattergrams (Spearman’s coefficient of correlation).

Fig. 4 Diagnostic marker potential of the D-dimer and myeloperoxidase (MPO) based score. Receiver operating characteristics (ROC) curves are
given for (A) the initial cohort of abdominal aortic aneurysm (AAA) patients and healthy controls, and (B) the validation cohort. (C) The score
distribution is further illustrated by boxplot for the validation set, with a significant difference between AAA patients and controls matched for
age, sex and previous cardiovascular disease (Mann–Whitney U test). (D) Score values of the validation cohort are shown in relation to AAA
maximum diameter (Spearman’s coefficient of correlation).
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seemed to have a minor impact on the distribution of
neutrophil populations.

Despite the fact that the CD16þmonocyte population had
only a weak diagnostic marker value for the original collec-
tive (p ¼ 0.039), reductions in sample size due to confounder
matchingmostly resulted in p-values of � 0.1 after adjusting
for co-morbidities or medication. Yet, matching for aspirin
intake, hyperlipidaemia and/or statin therapy as well as
hypertension and in particular angiotensin receptor blocker
treatment rendered the group difference in CD16þ mono-
cyte frequency insignificant. Comparably, the diagnostic
power of the monocyte chemotactic factor CCL2 was lost
when the collectives were matched for CHD, hyperlipidae-
mia, statin or anti-hypertensive therapy.

In contrast, the significant difference in plasma MPO, D-
dimer and calculated score was not lost when the AAA and
patient collectives were matched for any co-morbidity or
medication, even though theMPOmarker valuewas lowered
when aspirin or statin therapywere taken into consideration.
Of note, MPO, D-dimer and score also correlatedwith kidney
function parameters (Supplementary Table S6, available in
the online version), but none of the investigated parameters
showed a significant association with the Framingham Risk
Score. Finally, when the novel AAA score was evaluated in
multivariable analysis by binary logistic regression (►Table

7), the score aswell as hyperlipidaemia and/or lipid-lowering
therapy were revealed as significant and independent diag-
nostic variables, while hypertension and/or anti-hyperten-
sive therapy, CHD and anti-platelet therapy were not.

To validate the score, additional plasma samples of 63AAA
cases and 63 controls were analysed which were indepen-
dently collected in Leeds (United Kingdom) and one-to-one
matched for age, sex and diagnosis of previous cardiovascular
disease (composite of: myocardial infarction, angina pec-
toris, peripheral vascular disease or cerebrovascular disease).
In this validation cohort, the AAA and control group differed

significantly (p < 0.001) in score values (►Fig. 4C) with an
AUC of 0.693 in ROC analysis (►Fig. 4B). In addition, the score
correlated positively with maximum aortic diameter (►Fig.

4D) in the AAA collective (r ¼ 0.433, p < 0.001) but not in
the control group.

The Score Further Predicts Disease Progression
In a prognostic study design, 33 patients with small aneur-
ysms (without indication for surgical repair; Supplementary
Table S7, available in the online version) were followed at 6-
month intervals for AAA expansion. In 68 datasets, the score
was calculated at the beginning of themonitoring period and
found to correlate significantly with aneurysm growth over
the next 6 months (r ¼ 0.437, p < 0.001; ►Fig. 5A). When
the events were grouped into slow (< 2 mm) and fast (� 2
mm) progression over 6 months, the score (►Fig. 5B and C)
outperformed D-dimer (►Fig. 5E and F) in identifying
patients with rapid aneurysmprogressionwith an AUC value
of 0.701 (p ¼ 0.006) as compared with 0.612 (p ¼ 0.124). A
score cut-off at 0.935 was calculated by Youden’s index to
yield a prognostic sensitivity and specificity of 72 and 67%.

Discussion

In the present study, we focused on the analysis of circulating
monocyte and neutrophil sub-sets and associated plasma
factors CCL2 and MPO, evaluating their potential as biomar-
kers in the context of AAA. We prioritized matching the
control group according to sex, age, body mass index and
smoking status, with age and smoking being the most
important risk factors for AAA.33 A strong association of
plasma D-dimer concentration and AAA has been estab-
lished for some time and several studies have shown its
potential as a diagnostic and prognostic marker.6–8 In

Table 6 Correlation of explorative parameters with dimensions
of the aneurysm and intraluminal thrombus

Clinical parameter R p-Value

AAA maximum diameter [mm]

D-dimer [µg/mL] 0.537 0.001

MPO [ng/mL] 0.391 0.013

Score 0.664 < 0.001

ILT maximum diameter [mm]

Newly released neutrophils [�106/L] 0.528 0.002

D-dimer [µg/mL] 0.500 0.009

ILT volume [mm3]

D-dimer [µg/mL] 0.687 < 0.001

Score 0.450 0.031

Abbreviations: AAA, abdominal aortic aneurysm; ILT, intraluminal
thrombus; MPO, myeloperoxidase.

Table 7 Multivariable analysis (binary logistic regression)
based on 41 AAA cases and 38 controls of the original dataset

Parameter Exp(B) 95% CI
lower
value

95% CI
upper
value

p-Value

Score 1.873 1.085 3.234 0.024

Hypertension
and/or anti-
hypertensive
therapy

1.186 0.118 11.879 0.885

Hyperlipidaemia
and/or lipid-
lowering therapy

13.178 2.291 75.814 0.004

Coronary heart
disease

1.162 0.148 9.150 0.887

Anti-platelet therapy 3.410 0.580 20.035 0.175

Constant 0.085 0.027

Abbreviation: CI, confidence interval.
Note: Exp(B), odds ratio.
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agreement with these reports, the D-dimer levels were 2.8-
fold increased in our patient group and showed a significant
correlation with AAA maximum diameter and markedly
with ILT volume.

The chronic inflammation and in particular the infiltra-
tion by myeloid cell populations in ILT and AAA wall are
considered central elements of AAA pathogenesis.34,35 We
hypothesized that changes in the activation state of mono-
cytes and neutrophils might also be observed in the systemic
circulation of AAA patients. Both chronic and acute inflam-
matory states are often accompanied by a selective increase
in the CD16þmonocyte sub-sets.17,36 A rise in the frequency
of CD16 expressing monocytes was also found in our AAA
patients (18.8%) versus controls (16.0%) and is in agreement
with previously published results by Ghigliotti et al23 who
reported 15.1 and 11.0%, respectively. It should be noted that
the difference in recorded values may relate to distinct flow
cytometric approaches to eliminate ‘contaminating’ lympho-
cytes and granulocytes in monocyte detection. However, we
found the diagnostic power of CD16þ monocytes for AAA
(AUC ¼ 0.646, p ¼ 0.039) to be rather limited when com-
pared with other myeloid cell activation markers.

Considering the neutrophil sub-sets, we based our meth-
odological approach on the previously published marker
selection by Pillay et al.25 To exclude interference by tran-
sient inflammatory states, blood collectionwas postponed if

patients had a known infection. A significantly increased
number of activated and newly released neutrophils was
recorded in the AAA patient versus control group. This likely
reflects the AAA site of chronic inflammation and immune
cell recruitment.

In the further investigation, we followed the notion that
systemically observed cellular activation and recruitment of
myeloid cells might be accompanied by ameasurable change
in plasma cytokine or chemokine levels. Thus, an initial
screening of 10 patient versus 10 control samples was
performed using a multiplex bead array for several factors
known to influence or reflect myeloid cell activation, differ-
entiation and migration. While most of the investigated
cytokines and chemokines had previously been detected in
AAA tissue,37 limited information was available on their
blood values in AAA patients.38 In our reduced collective,
only MPO and CCL2 differed significantly between the two
study groups which was subsequently confirmed by ELISA.
Elevations of other factors might be detected with a larger
sample size. However, the increase of plasma MPO and CCL2
in AAA patients (compared with healthy controls) proved to
be most pronounced and hence exhibit the best biomarker
potential. CCL2 is a chemoattractant for monocytes,39 a
differentiation stimulus enhancing CD16 expression on
monocytes40 and drives a vicious circle of inflammation
and SMC apoptosis.41,42 MPO has received little research

Fig. 5 Prognostic marker potential of the D-dimer and myeloperoxidase (MPO)-based score. The score (A–C) was compared with D-dimer
plasma values (D–F) in predicting abdominal aortic aneurysm (AAA) expansion over the next 6 months. (A, D) A direct correlation was assessed
by Spearman’s test. (B, E) Events were grouped into slow (< 2 mm) and fast (� 2 mm) aneurysm growth in 6 months and evaluated by Mann–
Whitney U test as well as (C, F) receiver operating characteristics (ROC) analysis. Of note, two samples with exceedingly high values for D-dimer
(15.3 and 24.3 µg/mL) and the calculated score (21.0 and 37.9) were omitted from the graphs A, B, D and E to improve resolution.
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attention in the AAA context with differential results regard-
ing its marker potential.8,43 It is of central importance for the
innate defence catalyzing the formation of highly bacterio-
toxic hypochlorite radical species, but is also known to
contribute to media destruction in AAA.34 In our study, we
found moderately elevated plasma levels of CCL2 but highly
increased (in median doubled) MPO blood concentrations in
the patient group. Moreover, plasma MPO correlated with
tissue-released MPO and with maximum AAA diameter,
identifying the aneurysm as the primary source for circulat-
ing MPO. Of note, several patients with an aortic diameter
beyond 80 mm had moderate MPO blood concentrations.
This might indicate that in very large, non-ruptured aneur-
ysms the balance tilts towards fibrotic rather than inflam-
matory processes. The superior marker potential of plasma
MPO was further confirmed by ROC analysis and may relate
to the circumstance that MPO is released by both, activated
neutrophils as well as CD16þ monocytes.44,45

In multivariable logistic regression models including the
investigated myeloid cell parameters, MPO prevailed as an
independent marker for AAA diagnosis along with the estab-
lished AAA marker, D-dimer. The two parameters may be
combined in a diagnostic score reaching a sensitivity of 73%
and specificity of 80% with the cut-off set to 0, and indepen-
dent of age, sex and smoker status. To address the issue of
potential confounders not considered when matching
patient and control collectives, the devised diagnostic score
and all explorative parameters, which had been found to
differ significantly between the groups, were re-evaluated
after adjustment for co-morbidities or stablemedication. The
two collectives differed most prominently in hyperlipidae-
mia, statin use and aspirin therapy, but also in the frequency
of CHD, hypertension and in kidney function. Overall, the
neutrophil andmonocyte sub-sets aswell as CCL2,which had
moderate diagnostic marker value, were more sensitive to
confounders. In contrast, plasma MPO, D-dimer and the
deduced score proved significantly different between the
collectives even after adjustment for confounding condi-
tions, and the score prevailed in multivariable analysis as
an independent diagnostic variable. A further indication of
the robustness of the diagnostic score was provided by a
validation set of 126 independently collected plasma sam-
ples fromAAApatients and controlsmatched for sex, age and
previous cardiovascular disease.

Importantly, regarding the monitoring of patients with a
known AAA diagnosis, the score also showed prognostic
marker value which exceeded the potency of D-dimer
alone. Based on a cut-off set to 0.935, the score could
identify patients with rapid progression (� 2 mm over the
next 6 months) with 72% sensitivity and 67% specificity.
Thus, the score holds an important potential for patient
stratification.

In conclusion, our data provide proof-of-concept that
myeloid inflammation markers constitute a circulating foot-
print of atherosclerotic aortic disease.Wehave provided first
evidence that a combined score of plasma MPO and D-dimer
may prove beneficial in AAA diagnosis and prognosis. While
D-dimer is a confirmed and robust, albeit non-specific AAA

indicator, it is primarily associated with the presence and
size of the ILT. By including MPO as a second parameter
related to the central pathophysiological component of
inflammation, the deduced score is more closely associated
with AAA diameter than D-dimer and holds the potential to
also detect and monitor aneurysms with no or little throm-
bus. The diagnostic application of the scoremay be limited to
countries without ultrasound screening program and
requires further large-scale validation with unmatched
cohorts. The prognostic value of the score to predict disease
progression seems to be of particular interest as it may serve
clinicians to better guide the timing of therapeutic interven-
tions and would thus merit evaluation in prospective multi-
centre studies.

Limitations of the Study

The sample size of our study has certainly limited the
detection of potential biomarkers to parameters which
showa substantial difference inmeanvalues betweengroups
and/or small biological variance. While this may prove
beneficial in clinical practice, it does not reflect the para-
meter importance in AAA pathogenesis andmay also explain
discordances between our data and published literature.

As the study was explorative in design, no correction for
multiple testing was applied which increases the risk of
committing a type I error. However, the deduced diagnos-
tic score was subsequently challenged with a validation
cohort and proved significant irrespective of cardiovascular
disease.

D-dimer and MPO assessment can be included in routine
blood analysis at a cost of €83 for both tests (€24 for D-dimer,
€59 for MPO) currently charged by the local routine labora-
tory. D-dimer measurements are generally robust, based on
citrated plasma andwidelyoffered by routine laboratories. In
contrast, MPO assays are less frequent in clinical use, but
standardized tests are available for validated general chem-
istry analysers (e.g. Diazyme Latex Enhanced Immunoturbi-
dimetric MPO Assay). While these assays are offered for
standard ethylenediaminetetraacetic acid or heparin plasma,
amore careful pre-analytical sample handling (such as blood
storage on ice, centrifugation within the hour, as conducted
in our study) may be required to prevent artificial myeloid
cell activation, enable accurate plasma MPO assessment and
score calculation and will thus have to be further evaluated
for clinical routine application.

With respect to leukocyte sub-set measurement, a single
platform approachwith absolute counting beads would have
provided greater precision with a potentially better diag-
nostic value for neutrophil and monocyte sub-sets than
detected in the current study. Furthermore, the apoptotic
rate of myeloid cells was not addressed in our study (since
dead cells were excluded from the analysis by 7-AAD stain-
ing). However, the increased numbers of activated neutro-
phils which are reportedly exhibiting delayed apoptosis46

and of newly released neutrophils recruited upon neutrophil
loss may indirectly reflect changes in the balance of the
neutrophil apoptotic rate.
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What is known about this topic?

• The abdominal aortic aneurysm (AAA) is mostly
asymptomatic and hence difficult to diagnose unless
routine ultrasound screening is implemented in the
national health plan. Furthermore, the prediction of
rapid AAA progression is vital, as it is associatedwith a
high risk of rupture and patient death.

• The best characterized diagnostic and prognostic
blood parameter to date is the fibrin degradation
product D-dimer which is related to the frequently
occurring intraluminal thrombus but is also increased
in other cardiovascular disorders.

• Pre-clinical models have shown a central role for
neutrophils and monocytes in AAA pathogenesis
which points to a potential of myeloid factors as
AAA biomarkers.

What does this paper add?

• Based on a comprehensive comparison of neutrophil
and monocyte activation parameters, myeloperoxi-
dase was identified as the most elevated myeloid
marker in AAA patient blood.

• D-dimer andmyeloperoxidase represent two sensitive
biomarkers of AAA which reflect distinct components
of the AAApathomechanismandwhen combined yield
an improved score for AAA diagnosis and, more impor-
tantly, for prediction of rapid progression.
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