6 research outputs found

    Applications of Wine Pomace in the Food Industry: Approaches and Functions

    Get PDF
    Winemaking generates large amounts ofwine pomace, also called grape pomace. This by-product has attracted the attention of food scientists and the food industry, due to its high content in nutrients and bioactive compounds. This review mainly focuses on the different published approaches to the use of wine pomace and its functions in the food industry. Traditionally, wine pomace has been used to obtain wine alcohol, food colorings, and grape seed oil. More recently, research has focused in the production of other value-added products, such as extracts of bioactive compounds, mainly phenols, recovery of tartaric acid, and the making of flours. The most common functions associated with wine pomace products are their use as antioxidants, followed by their use as fortifying, coloring, and antimicrobial agents. These products have mainly been applied to the preparation of meat and fish products and to, a lesser extent, cereal products.Autonomous Government of Castilla y León, Spain, through the research project BU282U13

    Generation of Monoclonal Antibody Against trans

    No full text

    BioArena System for Knowing and Understanding the Biological World: A Review with New Experimental Results

    No full text
    A simple observation is the basis of the development of BioArena system: according to the first observations during the biological incubation after inoculation there is formaldehyde (HCHO) emission from the chromatographic spots; in this emission process, the level of HCHO molecules decreases time dependently. In fact, the antibiotic effect of an antibiotic-like compound decreases in parallel with the HCHO emission. The investigations demonstrated clearly a unique function and role of endogenous HCHO and its one main reaction product, ozone (O3), in the antiproliferative (e.g., antimicrobial) effect of different molecules with diverse chemical structures. The results in BioArena can be extended for in vivo conditions (e.g., greenhouse experiments), as well. For the pretreatment with different doses of inducers (immunostimulation-inducing molecules) there are always four bioequivalent immunostimulating response ranges (quadruple bioequivalent immune response system) in plants. The inducers (e.g., N-methylated basic amino acids, salicylic acid, cinnamic acid, and trace elements) do not participate directly in the induction of the immunostimulating effect. These new findings support a statement that HCHO and its reaction products (mainly O3), as bioreactive small molecules, are responsible for the immunostimulating activity (in vivo conditions), as well
    corecore