254 research outputs found
Optical nanolithography using a scanning near-field probe with an integrated light source
An ultracompact near-field optical probe is described that is based on a single, integrated assembly consisting of a gallium nitride (GaN) light-emitting diode (LED), a microlens, and a cantilever assembly containing a hollow pyramidal probe with a subwavelength aperture at its apex. The LED emits ultraviolet light and may be used as a light source for near-field photolithographic exposure. Using this simple device compatible with many commercial atomic force microscope systems, it is possible to form nanostructures in photoresist with a resolution of 35 nm, corresponding to λ/10. © 2008 American Institute of Physics
Molecular weight dependent vertical composition profiles of PCDTBT:PC71BM blends for organic photovoltaics
We have used Soxhlet solvent purification to fractionate a broad molecular weight distribution of the polycarbazole polymer PCDTBT into three lower polydispersity molecular weight fractions. Organic photovoltaic devices were made using a blend of the fullerene acceptor PC71BM with the molecular weight fractions. An average power conversion efficiency of 5.89% (peak efficiency of 6.15%) was measured for PCDTBT blend devices with a number average molecular weight of Mn = 25.5 kDa. There was significant variation between the molecular weight fractions with low (Mn = 15.0 kDa) and high (Mn = 34.9 kDa) fractions producing devices with average efficiencies of 5.02% and 3.70% respectively. Neutron reflectivity measurements on these polymer:PC71BM blend layers showed that larger molecular weights leads to an increase in the polymer enrichment layer thickness at the anode interface, this improves efficiency up to a limiting point where the polymer solubility causes a reduction of the PCDTBT concentration in the active layer
Resting-State Connectivity Biomarkers of Cognitive Performance and Social Function in Individuals With Schizophrenia Spectrum Disorder and Healthy Control Subjects
BACKGROUND: Deficits in neurocognition and social cognition are drivers of reduced functioning in schizophrenia spectrum disorders, with potentially shared neurobiological underpinnings. Many studies have sought to identify brain-based biomarkers of these clinical variables using a priori dichotomies (e.g., good vs. poor cognition, deficit vs. nondeficit syndrome).
METHODS: We evaluated a fully data-driven approach to do the same by building and validating a brain connectivity-based biomarker of social cognitive and neurocognitive performance in a sample using resting-state and task-based functional magnetic resonance imaging (n = 74 healthy control participants, n = 114 persons with schizophrenia spectrum disorder, 188 total). We used canonical correlation analysis followed by clustering to identify a functional connectivity signature of normal and poor social cognitive and neurocognitive performance.
RESULTS: Persons with poor social cognitive and neurocognitive performance were differentiated from those with normal performance by greater resting-state connectivity in the mirror neuron and mentalizing systems. We validated our findings by showing that poor performers also scored lower on functional outcome measures not included in the original analysis and by demonstrating neuroanatomical differences between the normal and poorly performing groups. We used a support vector machine classifier to demonstrate that functional connectivity alone is enough to distinguish normal and poorly performing participants, and we replicated our findings in an independent sample (n = 75).
CONCLUSIONS: A brief functional magnetic resonance imaging scan may ultimately be useful in future studies aimed at characterizing long-term illness trajectories and treatments that target specific brain circuitry in those with impaired cognition and function
Comparative efficacy of low-dose versus standard-dose azithromycin for patients with yaws: a randomised non-inferiority trial in Ghana and Papua New Guinea
Background: A dose of 30 mg/kg of azithromycin is recommended for treatment of yaws, a disease targeted for global eradication. Treatment with 20 mg/kg of azithromycin is recommended for the elimination of trachoma as a public health problem. In some settings, these diseases are co-endemic. We aimed to determine the efficacy of 20 mg/kg of azithromycin compared with 30 mg/kg azithromycin for the treatment of active and latent yaws. Methods: We did a non-inferiority, open-label, randomised controlled trial in children aged 6–15 years who were recruited from schools in Ghana and schools and the community in Papua New Guinea. Participants were enrolled based on the presence of a clinical lesion that was consistent with infectious primary or secondary yaws and a positive rapid diagnostic test for treponemal and non-treponemal antibodies. Participants were randomly assigned (1:1) to receive either standard-dose (30 mg/kg) or low-dose (20 mg/kg) azithromycin by a computer-generated random number sequence. Health-care workers assessing clinical outcomes in the field were not blinded to the patient's treatment, but investigators involved in statistical or laboratory analyses and the participants were blinded to treatment group. We followed up participants at 4 weeks and 6 months. The primary outcome was cure at 6 months, defined as lesion healing at 4 weeks in patients with active yaws and at least a four-fold decrease in rapid plasma reagin titre from baseline to 6 months in patients with active and latent yaws. Active yaws was defined as a skin lesion that was positive for Treponema pallidum ssp pertenue in PCR testing. We used a non-inferiority margin of 10%. This trial was registered with ClinicalTrials.gov, number NCT02344628.
Findings: Between June 12, 2015, and July 2, 2016, 583 (65·1%) of 895 children screened were enrolled; 292 patients were assigned a low dose of azithromycin and 291 patients were assigned a standard dose of azithromycin. 191 participants had active yaws and 392 had presumed latent yaws. Complete follow-up to 6 months was available for 157 (82·2%) of 191 patients with active yaws. In cases of active yaws, cure was achieved in 61 (80·3%) of 76 patients in the low-dose group and in 68 (84·0%) of 81 patients in the standard-dose group (difference 3·7%; 95% CI −8·4 to 15·7%; this result did not meet the non-inferiority criterion). There were no serious adverse events reported in response to treatment in either group. The most commonly reported adverse event at 4 weeks was gastrointestinal upset, with eight (2·7%) participants in each group reporting this symptom.
Interpretation:
In this study, low-dose azithromycin did not meet the prespecified non-inferiority margin compared with standard-dose azithromycin in achieving clinical and serological cure in PCR-confirmed active yaws. Only a single participant (with presumed latent yaws) had definitive serological failure. This work suggests that 20 mg/kg of azithromycin is probably effective against yaws, but further data are needed
Democracy, development and the executive presidency in Sri Lanka
This paper examines the developmental causes and consequences of the shift from a parliamentary to a semi-presidential system in Sri Lanka in 1978, examining its provenance, rationale, and its unfolding trajectory. drawing on a wide range of sources, it set out an argument that the executive presidency was born out of an elite impulse to create a more stable, centralised political structure to resist the welfarist electoral pressures that had taken hold in the post-independence period, and to pursue a market-driven model of economic growth. This strategy succeeded in its early years 197801993, when presidents retained legislative control, maintained a strong personal commitment to market reforms, and cultivated alternative sources of legitimacy. In the absence of these factors, the presidency slipped into crisis over 1994-2004 as resistance to elite-led projects of state reform mounted and as the president lost control of the legislature. Since 2005 the presidency has regained its power, but at the cost of abandoning its original rationale and function as a means to recalibrate the elite/mass power relations to facilitate elite-led reform agendas
Genetic Variants in Nuclear-Encoded Mitochondrial Genes Influence AIDS Progression
Background: The human mitochondrial genome includes only 13 coding genes while nuclear-encoded genes account for 99% of proteins responsible for mitochondrial morphology, redox regulation, and energetics. Mitochondrial pathogenesis occurs in HIV patients and genetically, mitochondrial DNA haplogroups with presumed functional differences have been associated with differential AIDS progression. Methodology/Principal Findings: Here we explore whether single nucleotide polymorphisms (SNPs) within 904 of the estimated 1,500 genes that specify nuclear-encoded mitochondrial proteins (NEMPs) influence AIDS progression among HIV-1 infected patients. We examined NEMPs for association with the rate of AIDS progression using genotypes generated by an Affymetrix 6.0 genotyping array of 1,455 European American patients from five US AIDS cohorts. Successfully genotyped SNPs gave 50% or better haplotype coverage for 679 of known NEMP genes. With a Bonferroni adjustment for the number of genes and tests examined, multiple SNPs within two NEMP genes showed significant association with AIDS progression: acyl-CoA synthetase medium-chain family member 4 (ACSM4) on chromosome 12 and peroxisomal D3,D2-enoyl- CoA isomerase (PECI) on chromosome 6. Conclusions: Our previous studies on mitochondrial DNA showed that European haplogroups with presumed functional differences were associated with AIDS progression and HAART mediated adverse events. The modest influences of nuclearencoded mitochondrial genes found in the current study add support to the idea that mitochondrial function plays a role in AIDS pathogenesis
Turnover of Sex Chromosomes in the Stickleback Fishes (Gasterosteidae)
Diverse sex-chromosome systems are found in vertebrates, particularly in teleost fishes, where different systems can be found in closely related species. Several mechanisms have been proposed for the rapid turnover of sex chromosomes, including the transposition of an existing sex-determination gene, the appearance of a new sex-determination gene on an autosome, and fusions between sex chromosomes and autosomes. To better understand these evolutionary transitions, a detailed comparison of sex chromosomes between closely related species is essential. Here, we used genetic mapping and molecular cytogenetics to characterize the sex-chromosome systems of multiple stickleback species (Gasterosteidae). Previously, we demonstrated that male threespine stickleback fish (Gasterosteus aculeatus) have a heteromorphic XY pair corresponding to linkage group (LG) 19. In this study, we found that the ninespine stickleback (Pungitius pungitius) has a heteromorphic XY pair corresponding to LG12. In black-spotted stickleback (G. wheatlandi) males, one copy of LG12 has fused to the LG19-derived Y chromosome, giving rise to an X1X2Y sex-determination system. In contrast, neither LG12 nor LG19 is linked to sex in two other species: the brook stickleback (Culaea inconstans) and the fourspine stickleback (Apeltes quadracus). However, we confirmed the existence of a previously reported heteromorphic ZW sex-chromosome pair in the fourspine stickleback. The sex-chromosome diversity that we have uncovered in sticklebacks provides a rich comparative resource for understanding the mechanisms that underlie the rapid turnover of sex-chromosome systems
Distinct Salmonella Enteritidis lineages associated with enterocolitis in high-income settings and invasive disease in low-income settings.
An epidemiological paradox surrounds Salmonella enterica serovar Enteritidis. In high-income settings, it has been responsible for an epidemic of poultry-associated, self-limiting enterocolitis, whereas in sub-Saharan Africa it is a major cause of invasive nontyphoidal Salmonella disease, associated with high case fatality. By whole-genome sequence analysis of 675 isolates of S. Enteritidis from 45 countries, we show the existence of a global epidemic clade and two new clades of S. Enteritidis that are geographically restricted to distinct regions of Africa. The African isolates display genomic degradation, a novel prophage repertoire, and an expanded multidrug resistance plasmid. S. Enteritidis is a further example of a Salmonella serotype that displays niche plasticity, with distinct clades that enable it to become a prominent cause of gastroenteritis in association with the industrial production of eggs and of multidrug-resistant, bloodstream-invasive infection in Africa.This work was supported by the Wellcome Trust. We would like to thank the members of the Pathogen Informatics Team and the core sequencing teams at the Wellcome Trust Sanger Institute (Cambridge, UK). We are grateful to D. Harris for work in managing the sequence data
Multilocus Sequence Typing as a Replacement for Serotyping in Salmonella enterica
Salmonella enterica subspecies enterica is traditionally subdivided into serovars by serological and nutritional characteristics. We used Multilocus Sequence Typing (MLST) to assign 4,257 isolates from 554 serovars to 1092 sequence types (STs). The majority of the isolates and many STs were grouped into 138 genetically closely related clusters called eBurstGroups (eBGs). Many eBGs correspond to a serovar, for example most Typhimurium are in eBG1 and most Enteritidis are in eBG4, but many eBGs contained more than one serovar. Furthermore, most serovars were polyphyletic and are distributed across multiple unrelated eBGs. Thus, serovar designations confounded genetically unrelated isolates and failed to recognize natural evolutionary groupings. An inability of serotyping to correctly group isolates was most apparent for Paratyphi B and its variant Java. Most Paratyphi B were included within a sub-cluster of STs belonging to eBG5, which also encompasses a separate sub-cluster of Java STs. However, diphasic Java variants were also found in two other eBGs and monophasic Java variants were in four other eBGs or STs, one of which is in subspecies salamae and a second of which includes isolates assigned to Enteritidis, Dublin and monophasic Paratyphi B. Similarly, Choleraesuis was found in eBG6 and is closely related to Paratyphi C, which is in eBG20. However, Choleraesuis var. Decatur consists of isolates from seven other, unrelated eBGs or STs. The serological assignment of these Decatur isolates to Choleraesuis likely reflects lateral gene transfer of flagellar genes between unrelated bacteria plus purifying selection. By confounding multiple evolutionary groups, serotyping can be misleading about the disease potential of S. enterica. Unlike serotyping, MLST recognizes evolutionary groupings and we recommend that Salmonella classification by serotyping should be replaced by MLST or its equivalents
- …