404 research outputs found

    Collider signals from slow decays in supersymmetric models with an intermediate-scale solution to the mu problem

    Get PDF
    The problem of the origin of the mu parameter in the Minimal Supersymmetric Standard Model can be solved by introducing singlet supermultiplets with non-renormalizable couplings to the ordinary Higgs supermultiplets. The Peccei-Quinn symmetry is broken at a scale which is the geometric mean between the weak scale and the Planck scale, yielding a mu term of the right order of magnitude and an invisible axion. These models also predict one or more singlet fermions which have electroweak-scale masses and suppressed couplings to MSSM states. I consider the case that such a singlet fermion, containing the axino as an admixture, is the lightest supersymmetric particle. I work out the relevant couplings in several of the simplest models of this type, and compute the partial decay widths of the next-to-lightest supersymmetric particle involving leptons or jets. Although these decays will have an average proper decay length which is most likely much larger than a typical collider detector, they can occasionally occur within the detector, providing a striking signal. With a large sample of supersymmetric events, there will be an opportunity to observe these decays, and so gain direct information about physics at very high energy scales.Comment: 24 pages, LaTeX, 4 figure

    The Neutralino Sector in the U(1)-Extended Supersymmetric Standard Model

    Full text link
    Motivated by grand unified theories and string theories we analyze the general structure of the neutralino sector in the USSM, an extension of the Minimal Supersymmetric Standard Model that involves a broken extra U(1) gauge symmetry. This supersymmetric U(1)-extended model includes an Abelian gauge superfield and a Higgs singlet superfield in addition to the standard gauge and Higgs superfields of the MSSM. The interactions between the MSSM fields and the new fields are in general weak and the mixing is small, so that the coupling of the two subsystems can be treated perturbatively. As a result, the mass spectrum and mixing matrix in the neutralino sector can be analyzed analytically and the structure of this 6-state system is under good theoretical control. We describe the decay modes of the new states and the impact of this extension on decays of the original MSSM neutralinos, including radiative transitions in cross-over zones. Production channels in cascade decays at the LHC and pair production at e+e−e^+e^- colliders are also discussed.Comment: 50 pages, 9 figures, equations.sty include

    MYCN expression induces replication stress and sensitivity to PARP inhibition in neuroblastoma

    Get PDF
    This study investigates the influence expression of the MYCN oncogene has on the DNA damage response, replication fork progression and sensitivity to PARP inhibition in neuroblastoma. In a panel of neuroblastoma cell lines, MYCN amplification or MYCN expression resulted in increased cell death in response to a range of PARP inhibitors (niraparib, veliparib, talazoparib and olaparib) compared to the response seen in non-expressing/amplified cells. MYCN expression slowed replication fork speed and increased replication fork stalling, an effect that was amplified by PARP inhibition or PARP1 depletion. Increased DNA damage seen was specifically induced in S-phase cells. Importantly, PARP inhibition caused a significant increase in the survival of mice bearing MYCN expressing tumours in a transgenic murine model of MYCN expressing neuroblastoma. Olaparib also sensitized MYCN expressing cells to camptothecin- and temozolomide-induced cell death to a greater degree than non-expressing cells. In summary, MYCN expression leads to increased replication stress in neuroblastoma cells. This effect is exaggerated by inhibition of PARP, resulting in S-phase specific DNA damage and ultimately increased tumour cell death. PARP inhibition alone or in combination with classical chemotherapeutics is therefore a potential therapeutic strategy for neuroblastoma and may be more effective in MYCN expressing tumours

    Wedgebox analysis of four-lepton events from neutralino pair production at the LHC

    Get PDF
    `Wedgebox' plots constructed by plotting the di-electron invariant mass versus the di-muon invariant mass from pp -> e^+e^- mu^+ mu^- + missing energy signature LHC events. Data sets of such events are obtained across the MSSM input parameter space in event-generator simulations, including cuts designed to remove SM backgrounds. Their study reveals several general features: (1)Regions in the MSSM input parameter space where a sufficient number of events are expected so as to be able to construct a clear wedgebox plot are delineated. (2)The presence of box shapes on a wedgebox plot either indicates the presence of heavy Higgs bosons decays or restricts the location to a quite small region of low \mu and M_2 values \lsim 200 GeV, a region denoted as the `lower island'. In this region, wedgebox plots can be quite complicated and change in pattern rather quickly as one moves around in the (\mu, M_2) plane. (3)Direct neutralino pair production from an intermediate Z^{0*} may only produce a wedge-shape since only \widetilde{\chi}_2^0\widetilde{\chi}_3^0 decays can contribute significantly. (4)A double-wedge or wedge-protruding-from-a-box pattern on a wedgebox plot, which results from combining a variety of MSSM production processes, yields three distinct observed endpoints, almost always attributable to \widetilde{\chi}_{2,3,4}^0 \to \widetilde{\chi}_1^0 \ell^+\ell^- decays, which can be utilized to determine a great deal of information about the neutralino and slepton mass spectra and related MSSM input parameters. Wedge and double-wedge patterns are seen in wedgebox plots in another region of higher \mu and M_2 values, denoted as the`upper island.' Here the pattern is simpler and more stable as one moves across the (\mu, M_2) input parameter space.Comment: 28 pages (LaTeX), 8 figures (encapsulated postscript

    What can local authorities do to improve the social care-related quality of life of older adults living at home? Evidence from the Adult Social Care Survey

    Get PDF
    Local authorities spend considerable resources on social care at home for older adults. Given the expected growth in the population of older adults and budget cuts on local government, it is important to find efficient ways of maintaining and improving the quality of life of older adults. The ageing in place literature suggests that policies in other functions of local authorities may have a significant role to play. This study aims to examine the associations between social care-related quality of life (SCRQoL) in older adults and three potential policy targets for local authorities: (i) accessibility of information and advice, (ii) design of the home and (iii) accessibility of the local area. We used cross-sectional data from the English national Adult Social Care Survey (ASCS) 2010/2011 on service users aged 65 years and older and living at home (N=29,935). To examine the association between SCRQoL, as measured by the ASCOT, and three single-item questions about accessibility of information, design of the home and accessibility of the local area, we estimate linear and quantile regression models. After adjusting for physical and mental health factors and other confounders our findings indicate that SCRQoL is significantly lower for older adults who find it more difficult to find information and advice, for those who report that their home design is inappropriate for their needs and for those who find it more difficult to get around their local area. In addition, these three variables are as strongly associated with SCRQoL as physical and mental health factors. We conclude that in seeking to find ways to maintain and improve the quality of life of social care users living at home, local authorities could look more broadly across their responsibilities. Further research is required to explore the cost-effectiveness of these options compared to standard social care services

    Higgs Scalars in the Minimal Non-minimal Supersymmetric Standard Model

    Get PDF
    We consider the simplest and most economic version among the proposed non-minimal supersymmetric models, in which the Ό\mu-parameter is promoted to a singlet superfield, whose all self-couplings are absent from the renormalizable superpotential. Such a particularly simple form of the renormalizable superpotential may be enforced by discrete RR-symmetries which are extended to the gravity-induced non-renormalizable operators as well. We show explicitly that within the supergravity-mediated supersymmetry-breaking scenario, the potentially dangerous divergent tadpoles associated with the presence of the gauge singlet first appear at loop levels higher than 5 and therefore do not destabilize the gauge hierarchy. The model provides a natural explanation for the origin of the Ό\mu-term, without suffering from the visible axion or the cosmological domain-wall problem. Focusing on the Higgs sector of this minimal non-minimal supersymmetric standard model, we calculate its effective Higgs potential by integrating out the dominant quantum effects due to stop squarks. We then discuss the phenomenological implications of the Higgs scalars predicted by the theory for the present and future high-energy colliders. In particular, we find that our new minimal non-minimal supersymmetric model can naturally accommodate a relatively light charged Higgs boson, with a mass close to the present experimental lower bound.Comment: 63 pages (12 figures), extended versio

    Implications of a Massless Neutralino for Neutrino Physics

    Get PDF
    We consider the phenomenological implications of a soft SUSY breaking term BN at the TeV scale (here B is the U(1)_Y gaugino and N is the right-handed neutrino field). In models with a massless (or nearly massless) neutralino, such a term will give rise through the see-saw mechanism to new contributions to the mass matrix of the light neutrinos. We treat the massless neutralino as an (almost) sterile neutrino and find that its mass depends on the square of the soft SUSY breaking scale, with interesting consequences for neutrino physics. We also show that, although it requires fine-tuning, a massless neutralino in the MSSM or NMSSM is not experimentally excluded. The implications of this scenario for neutrino physics are discussed.Comment: 14 pages, latex, no figure

    Dynamic nuclear polarization and spin-diffusion in non-conducting solids

    Full text link
    There has been much renewed interest in dynamic nuclear polarization (DNP), particularly in the context of solid state biomolecular NMR and more recently dissolution DNP techniques for liquids. This paper reviews the role of spin diffusion in polarizing nuclear spins and discusses the role of the spin diffusion barrier, before going on to discuss some recent results.Comment: submitted to Applied Magnetic Resonance. The article should appear in a special issue that is being published in connection with the DNP Symposium help in Nottingham in August 200

    Non-Minimal Supersymmetric Higgs Bosons at LEP2

    Get PDF
    We discuss the discovery reach of LEP2 for the Higgs sector of a general extension of the MSSM including a single gauge singlet field. This change introduces a new quartic Higgs boson self-coupling which can increase the masses of the CP-even states, and also allows mixing between singlet and non-singlet states which can reduce the couplings of the mass eigenstates to the ZZ. The lightest CP-even Higgs boson is bounded by a parameter Λ\Lambda which takes a maximum value Λmax≈136−146\Lambda_{max}\approx 136-146 GeV for top mass 150−195150-195 GeV. We generalise the discussion of the bound to include the entire CP-even spectrum and show how experiment may exclude values of Λ\Lambda smaller than some Λmin\Lambda_{min}. CP-even Higgs boson searches at LEP2 will be able to exclude Λmin≈81−105\Lambda_{min}\approx 81-105 GeV, depending on the machine parameters. We also present exclusion plots in the mA−tan⁥ÎČm_A-\tan\beta plane, based on an analysis of CP-even, CP-odd and charged Higgs production processes at LEP2.Comment: Plain LaTeX, 33 pages, figures uuencoded and gzipped. Trivial changes and typos corrected for publication in Rhys Rev

    Charged lepton Flavor Violation in Supersymmetry with Bilinear R-Parity Violation

    Get PDF
    The simplest unified extension of the Minimal Supersymmetric Standard Model with bi-linear R-parity violation naturally predicts a hierarchical neutrino mass spectrum, suitable to explain atmospheric and solar neutrino fluxes. We study whether the individual violation of the lepton numbers L_{e,mu,tau} in the charged sector can lead to measurable rates for BR(mu->e gamma)and $BR(tau-> mu gamma). We find that some of the R-parity violating terms that are compatible with the observed atmospheric neutrino oscillations could lead to rates for mu->e gamma measurable in projected experiments. However, the Delta m^2_{12} obtained for those parameters is too high to be compatible with the solar neutrino data, excluding therefore the possibility of having measurable rates for mu->e gamma in the model.Comment: 29 pages, 8 figures. Constraint from solar neutrino data included, conclusions changed respect v
    • 

    corecore