233 research outputs found
PNAS plus: plasmodium falciparum responds to amino acid starvation by entering into a hibernatory state
The human malaria parasite Plasmodium falciparum is auxotrophic for most amino acids. Its amino acid needs are met largely through the degradation of host erythrocyte hemoglobin; however the parasite must acquire isoleucine exogenously, because this amino acid is not present in adult human hemoglobin. We report that when isoleucine is withdrawn from the culture medium of intraerythrocytic P. falciparum, the parasite slows its metabolism and progresses through its developmental cycle at a reduced rate. Isoleucine-starved parasites remain viable for 72 h and resume rapid growth upon resupplementation. Protein degradation during starvation is important for maintenance of this hibernatory state. Microarray analysis of starved parasites revealed a 60% decrease in the rate of progression through the normal transcriptional program but no other apparent stress response. Plasmodium parasites do not possess a TOR nutrient-sensing pathway and have only a rudimentary amino acid starvation-sensing eukaryotic initiation factor 2α (eIF2α) stress response. Isoleucine deprivation results in GCN2-mediated phosphorylation of eIF2α, but kinase-knockout clones still are able to hibernate and recover, indicating that this pathway does not directly promote survival during isoleucine starvation. We conclude that P. falciparum, in the absence of canonical eukaryotic nutrient stress-response pathways, can cope with an inconsistent bloodstream amino acid supply by hibernating and waiting for more nutrient to be provided
Double-strand break repair and homologous recombination in Schizosaccharomyces pombe
In recent years our understanding of double strand break repair and homologous recombination in Schizosaccharomyces pombe has increased significantly, and the identification of novel pathways and genes with homologues in higher eukaryotes has increased its value as a model organisms for double strand break repair. We will review the S. pombe literature on double strand break repair, mainly focussing on homologous recombination in mitotic cells
MRD codes with maximum idealizers
Left and right idealizers are important invariants of linear rank-distance
codes. In the case of maximum rank-distance (MRD for short) codes in
the idealizers have been proved to be isomorphic to
finite fields of size at most . Up to now, the only known MRD codes with
maximum left and right idealizers are generalized Gabidulin codes, which were
first constructed in 1978 by Delsarte and later generalized by Kshevetskiy and
Gabidulin in 2005. In this paper we classify MRD codes in
for with maximum left and right idealizers
and connect them to Moore-type matrices. Apart from generalized Gabidulin
codes, it turns out that there is a further family of rank-distance codes
providing MRD ones with maximum idealizers for , odd and for ,
. These codes are not equivalent to any previously known MRD
code. Moreover, we show that this family of rank-distance codes does not
provide any further examples for .Comment: Reviewers' comments implemented, we changed the titl
Uif, a Large Transmembrane Protein with EGF-Like Repeats, Can Antagonize Notch Signaling in Drosophila
<div><h3>Background</h3><p>Notch signaling is a highly conserved pathway in multi-cellular organisms ranging from flies to humans. It controls a variety of developmental processes by stimulating the expression of its target genes in a highly specific manner both spatially and temporally. The diversity, specificity and sensitivity of the Notch signaling output are regulated at distinct levels, particularly at the level of ligand-receptor interactions.</p> <h3>Methodology/Principal Findings</h3><p>Here, we report that the <em>Drosophila</em> gene <em>uninflatable</em> (<em>uif</em>), which encodes a large transmembrane protein with eighteen EGF-like repeats in its extracellular domain, can antagonize the canonical Notch signaling pathway. Overexpression of Uif or ectopic expression of a neomorphic form of Uif, Uif*, causes Notch signaling defects in both the wing and the sensory organ precursors. Further experiments suggest that ectopic expression of Uif* inhibits Notch signaling <em>in cis</em> and acts at a step that is dependent on the extracellular domain of Notch. Our results suggest that Uif can alter the accessibility of the Notch extracellular domain to its ligands during Notch activation.</p> <h3>Conclusions/Significance</h3><p>Our study shows that Uif can modulate Notch activity, illustrating the importance of a delicate regulation of this signaling pathway for normal patterning.</p> </div
Cooperation between Engulfment Receptors: The Case of ABCA1 and MEGF10
The engulfment of dying cells is a specialized form of phagocytosis that is extremely conserved across evolution. In the worm, it is genetically controlled by two parallel pathways, which are only partially reconstituted in mammals. We focused on the recapitulation of the CED-1 defined pathway in mammalian systems. We first explored and validated MEGF10, a novel receptor bearing striking structural similarities to CED-1, as a bona fide functional ortholog in mammals and hence progressed toward the analysis of molecular interactions along the corresponding pathway. We ascertained that, in a system of forced expression by transfection, MEGF10 function can be modulated by the ATP binding cassette transporter ABCA1, ortholog to CED-7. Indeed, the coexpression of either a functional or a mutant ABCA1 exerted a transdominant positive or negative modulation on the MEGF10-dependent engulfment. The combined use of biochemical and biophysical approaches indicated that this functional cooperation relies on the alternate association of these receptors with a common partner, endogenously expressed in our cell system. We provide the first working model structuring in mammals the CED-1 dependent pathway
The Phylogenetic Origin of oskar Coincided with the Origin of Maternally Provisioned Germ Plasm and Pole Cells at the Base of the Holometabola
The establishment of the germline is a critical, yet surprisingly evolutionarily
labile, event in the development of sexually reproducing animals. In the fly
Drosophila, germ cells acquire their fate early during
development through the inheritance of the germ plasm, a specialized maternal
cytoplasm localized at the posterior pole of the oocyte. The gene
oskar (osk) is both necessary and
sufficient for assembling this substance. Both maternal germ plasm and
oskar are evolutionary novelties within the insects, as the
germline is specified by zygotic induction in basally branching insects, and
osk has until now only been detected in dipterans. In order
to understand the origin of these evolutionary novelties, we used comparative
genomics, parental RNAi, and gene expression analyses in multiple insect
species. We have found that the origin of osk and its role in
specifying the germline coincided with the innovation of maternal germ plasm and
pole cells at the base of the holometabolous insects and that losses of
osk are correlated with changes in germline determination
strategies within the Holometabola. Our results indicate that the invention of
the novel gene osk was a key innovation that allowed the
transition from the ancestral late zygotic mode of germline induction to a
maternally controlled establishment of the germline found in many holometabolous
insect species. We propose that the ancestral role of osk was
to connect an upstream network ancestrally involved in mRNA localization and
translational control to a downstream regulatory network ancestrally involved in
executing the germ cell program
Met-Independent Hepatocyte Growth Factor-mediated regulation of cell adhesion in human prostate cancer cells
BACKGROUND: Prostate cancer cells communicate reciprocally with the stromal cells surrounding them, inside the prostate, and after metastasis, within the bone. Each tissue secretes factors for interpretation by the other. One stromally-derived factor, Hepatocyte Growth Factor (HGF), was found twenty years ago to regulate invasion and growth of carcinoma cells. Working with the LNCaP prostate cancer progression model, we found that these cells could respond to HGF stimulation, even in the absence of Met, the only known HGF receptor. The new HGF binding partner we find on the cell surface may help to clarify conflicts in the past literature about Met expression and HGF response in cancer cells. METHODS: We searched for Met or any HGF binding partner on the cells of the PC3 and LNCaP prostate cancer cell models, using HGF immobilized on agarose beads. By using mass spectrometry analyses and sequencing we have identified nucleolin protein as a novel HGF binding partner. Antibodies against nucleolin (or HGF) were able to ameliorate the stimulatory effects of HGF on met-negative prostate cancer cells. Western blots, RT-PCR, and immunohistochemistry were used to assess nucleolin levels during prostate cancer progression in both LNCaP and PC3 models. RESULTS: We have identified HGF as a major signaling component of prostate stromal-conditioned media (SCM) and have implicated the protein nucleolin in HGF signal reception by the LNCaP model prostate cancer cells. Antibodies that silence either HGF (in SCM) or nucleolin (on the cell surfaces) eliminate the adhesion-stimulatory effects of the SCM. Likewise, addition of purified HGF to control media mimics the action of SCM. C4-2, an LNCaP lineage-derived, androgen-independent human prostate cancer cell line, responds to HGF in a concentration-dependent manner by increasing its adhesion and reducing its migration on laminin substratum. These HGF effects are not due to shifts in the expression levels of laminin-binding integrins, nor can they be linked to expression of the known HGF receptor Met, as neither LNCaP nor clonally-derived C4-2 sub-line contain any detectable Met protein. Even in the absence of Met, small GTPases are activated, linking HGF stimulation to membrane protrusion and integrin activation. Membrane-localized nucelolin levels increase during cancer progression, as modeled by both the PC3 and LNCaP prostate cancer progression cell lines. CONCLUSION: We propose that cell surface localized nucleolin protein may function in these cells as a novel HGF receptor. Membrane localized nucleolin binds heparin-bound growth factors (including HGF) and appears upregulated during prostate cancer progression. Antibodies against nucleolin are able to ameliorate the stimulatory effects of HGF on met-negative prostate cancer cells. HGF-nucleolin interactions could be partially responsible for the complexity of HGF responses and met expression reported in the literature
Quark Matter in a Strong Magnetic Background
In this chapter, we discuss several aspects of the theory of strong
interactions in presence of a strong magnetic background. In particular, we
summarize our results on the effect of the magnetic background on chiral
symmetry restoration and deconfinement at finite temperature. Moreover, we
compute the magnetic susceptibility of the chiral condensate and the quark
polarization at zero temperature. Our theoretical framework is given by chiral
models: the Nambu-Jona-Lasinio (NJL), the Polyakov improved NJL (or PNJL) and
the Quark-Meson (QM) models. We also compare our results with the ones obtained
by other groups.Comment: 34 pages, survey. To appear in Lect. Notes Phys. "Strongly
interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K.
Landsteiner, A. Schmitt, H.-U. Ye
- …