194 research outputs found

    Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor

    Get PDF
    Pepper (Capsicum L.) is a nutritionally and economically important crop that is cultivated throughout the world as a vegetable, condiment, and food additive. Genetic transformation using Agrobacterium tumefaciens (agrobacterium) is a powerful biotechnology tool that could be used in pepper to develop community-based functional genomics resources and to introduce important agronomic traits. However, pepper is considered to be highly recalcitrant for agrobacterium-mediated transformation, and current transformation protocols are either inefficient, cumbersome or highly genotype dependent. The main bottleneck in pepper transformation is the inability to generate cells that are competent for both regeneration and transformation. Here, we report that ectopic expression of the Brassica napus BABY BOOM AP2/ERF transcription factor overcomes this bottleneck and can be used to efficiently regenerate transgenic plants from otherwise recalcitrant sweet pepper (C. annuum) varieties. Transient activation of BABY BOOM in the progeny plants induced prolific cell regeneration and was used to produce a large number of somatic embryos that could be converted readily to seedlings. The data highlight the utility of combining biotechnology and classical plant tissue culture approaches to develop an efficient transformation and regeneration system for a highly recalcitrant vegetable crop

    Cell Wall Composition and Structure Define the Developmental Fate of Embryogenic Microspores in Brassica napus

    Full text link
    [EN] Microspore cultures generate a heterogeneous population of embryogenic structures that can be grouped into highly embryogenic structures [exine-enclosed (EE) and loose bicellular structures (LBS)] and barely embryogenic structures [compact callus (CC) and loose callus (LC) structures]. Little is known about the factors behind these different responses. In this study we performed a comparative analysis of the composition and architecture of the cell walls of each structure by confocal and quantitative electron microscopy. Each structure presented specific cell wall characteristics that defined their developmental fate. EE and LBS structures, which are responsible for most of the viable embryos, showed a specific profile with thin walls rich in arabinogalactan proteins (AGPs), highly and low methyl-esterified pectin and callose, and a callose-rich subintinal layer not necessarily thick, but with a remarkably high callose concentration. The different profiles of EE and LBS walls support the development as suspensorless and suspensor-bearing embryos, respectively. Conversely, less viable embryogenic structures (LC) presented the thickest walls and the lowest values for almost all of the studied cell wall components. These cell wall properties would be the less favorable for cell proliferation and embryo progression. High levels of highly methyl-esterified pectin are necessary for wall flexibility and growth of highly embryogenic structures. AGPs seem to play a role in cell wall stiffness, possibly due to their putative role as calcium capacitors, explaining the positive relationship between embryogenic potential and calcium levels.This work was supported by grant PID2020-115763RBI00 to JS-S from Spanish MICINN and by a Juan de la Cierva -Incorporacion Fellowship and a Marie Sklodowska-Curie Individual Fellowship (656579) to PC-M. RM holds a CDEIGENT (2018/023) fellowship from Generalitat Valenciana.Camacho-Fernández, C.; Seguí-Simarro, JM.; Mir Moreno, R.; Boutilier, K.; Corral-Martínez, P. (2021). Cell Wall Composition and Structure Define the Developmental Fate of Embryogenic Microspores in Brassica napus. Frontiers in Plant Science. 12:1-16. https://doi.org/10.3389/fpls.2021.7371391161

    Molecular Valves for Controlling Gas Phase Transport Made from Discrete Angstrom-Sized Pores in Graphene

    Full text link
    An ability to precisely regulate the quantity and location of molecular flux is of value in applications such as nanoscale 3D printing, catalysis, and sensor design. Barrier materials containing pores with molecular dimensions have previously been used to manipulate molecular compositions in the gas phase, but have so far been unable to offer controlled gas transport through individual pores. Here, we show that gas flux through discrete angstrom-sized pores in monolayer graphene can be detected and then controlled using nanometer-sized gold clusters, which are formed on the surface of the graphene and can migrate and partially block a pore. In samples without gold clusters, we observe stochastic switching of the magnitude of the gas permeance, which we attribute to molecular rearrangements of the pore. Our molecular valves could be used, for example, to develop unique approaches to molecular synthesis that are based on the controllable switching of a molecular gas flux, reminiscent of ion channels in biological cell membranes and solid state nanopores.Comment: to appear in Nature Nanotechnolog

    Auxin biosynthesis maintains embryo identity and growth during BABY BOOM-induced somatic embryogenesis

    Get PDF
    Somatic embryogenesis is a type of plant cell totipotency where embryos develop from non-reproductive (vegetative) cells without fertilization. Somatic embryogenesis can be induced in vitro by auxins, and by ectopic expression of embryo-expressed transcription factors like the BABY BOOM (BBM) AINTEGUMENTA-LIKE APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) domain protein. These different pathways are thought to converge to promote auxin response and biosynthesis, but the specific roles of the endogenous auxin pathway in somatic embryogenesis induction have not been well-characterized. Here we show that BBM transcriptionally regulates the YUCCA3 (YUC3) and YUC8 auxin biosynthesis genes during BBM-mediated somatic embryogenesis in Arabidopsis (Arabidopsis thaliana) seedlings. BBM induced local and ectopic YUC3 and YUC8 expression in seedlings, which coincided with increased DR5 auxin response and indole-3-acetic acid (IAA) biosynthesis and with ectopic expression of the WOX2 embryo reporter. YUC-driven auxin biosynthesis was required for BBM-mediated somatic embryogenesis, as the number of embryogenic explants was reduced by ca. 50% in yuc3 yuc8 mutants and abolished after chemical inhibition of YUC enzyme activity. However, a detailed YUC inhibitor time-course study revealed that YUC-dependent IAA biosynthesis is not required for the re-initiation of totipotent cell identity in seedlings. Rather, YUC enzymes are required later in somatic embryo development for the maintenance of embryo identity and growth. This study resolves a long-standing question about the role of endogenous auxin biosynthesis in transcription factor-mediated somatic embryogenesis and also provides an experimental framework for understanding the role of endogenous auxin biosynthesis in other in planta and in vitro embryogenesis systems

    Regulatory network of secondary metabolism in Brassica rapa:insight into the glucosinolate pathway

    Get PDF
    Brassica rapa studies towards metabolic variation have largely been focused on the profiling of the diversity of metabolic compounds in specific crop types or regional varieties, but none aimed to identify genes with regulatory function in metabolite composition. Here we followed a genetical genomics approach to identify regulatory genes for six biosynthetic pathways of health-related phytochemicals, i.e carotenoids, tocopherols, folates, glucosinolates, flavonoids and phenylpropanoids. Leaves from six weeks-old plants of a Brassica rapa doubled haploid population, consisting of 92 genotypes, were profiled for their secondary metabolite composition, using both targeted and LC-MS-based untargeted metabolomics approaches. Furthermore, the same population was profiled for transcript variation using a microarray containing EST sequences mainly derived from three Brassica species: B. napus, B. rapa and B. oleracea. The biochemical pathway analysis was based on the network analyses of both metabolite QTLs (mQTLs) and transcript QTLs (eQTLs). Co-localization of mQTLs and eQTLs lead to the identification of candidate regulatory genes involved in the biosynthesis of carotenoids, tocopherols and glucosinolates. We subsequently focused on the well-characterized glucosinolate pathway and revealed two hotspots of co-localization of eQTLs with mQTLs in linkage groups A03 and A09. Our results indicate that such a large-scale genetical genomics approach combining transcriptomics and metabolomics data can provide new insights into the genetic regulation of metabolite composition of Brassica vegetables

    UNBOUND

    Get PDF
    As part of the graduating class of Fanshawe College\u27s Fashion Design program, we are leaving the comfort of our cocoon to transform ourselves into full-fledged designers. Our aspirations have developed, and our goals have become clear. Reaching the heights of new age fashion is now possible with the wings that have been provided to us through the articulate direction and constant devotion of our advisors. With all of the help and guidance that our professors have given us, we are now able to go into the industry with confidence. The creativity within the Unbound show is a reflection of the intellect, devotion, passion and strong will that our designer\u27s possess. We have collected ourselves as individuals and have successfully pulled together in a collaborative effort to attain excellence and success in tonight\u27s Unbound fashion gala. - Graduating Class of 2009https://first.fanshawec.ca/famd_design_fashiondesign_unbound/1005/thumbnail.jp

    Decoding the Epigenetic Language of Plant Development

    Get PDF
    Epigenetics refers to the study of heritable changes in gene expression or cellular phenotype without changes in DNA sequence. Epigenetic regulation of gene expression is accomplished by DNA methylation, histone modifications, histone variants, chromatin remodeling, and may involve small RNAs. DNA methylation at cytosine is carried out by enzymes called DNA Methyltransferases and is involved in many cellular processes, such as silencing of transposable elements and pericentromeric repeats, X-chromosome inactivation and genomic imprinting, etc. Histone modifications refer to posttranslational covalent attachment of chemical groups onto histones such as phosphorylation, acetylation, and methylation, etc. Histone variants, the non-canonical histones with amino acid sequences divergent from canonical histones, can have different epigenetic impacts on the genome from canonical histones. Higher-order chromatin structures maintained or modified by chromatin remodeling proteins also play important roles in regulating gene expression. Small non-coding RNAs play various roles in the regulation of gene expression at pre- as well as posttranscriptional levels. A special issue of Molecular Plant on ‘Epigenetics and Plant Development’ (Volume 4, Number 2, 2009) published a variety of articles covering many aspects of epigenetic regulation of plant development. We have tried here to present a bird's-eye view of these credible efforts towards understanding the mysterious world of epigenetics. The majority of the articles are about the chromatin modifying proteins, including histone modifiers, histone variants, and chromatin remodeling proteins that regulate various developmental processes, such as flowering time, vernalization, stem cell maintenance, and response to hormonal and environmental stresses, etc. Regulation of expression of seed transcriptome, involvement of direct tandem repeat elements in the PHE1 imprinting in addition to PcG proteins activity, paramutation, and epigenetic barriers in species hybridization are described well. The last two papers are about the Pol V-mediated heterochromatin formation independent of the 24nt-siRNA and the effect of genome position and tissue type on epigenetic regulation of gene expression. These findings not only further our current understanding of epigenetic mechanisms involved in many biological phenomena, but also pave the path for the future work, by raising many new questions that are discussed in the following lines

    In Situ Observations during Chemical Vapor Deposition of Hexagonal Boron Nitride on Polycrystalline Copper.

    Get PDF
    Using a combination of complementary in situ X-ray photoelectron spectroscopy and X-ray diffraction, we study the fundamental mechanisms underlying the chemical vapor deposition (CVD) of hexagonal boron nitride (h-BN) on polycrystalline Cu. The nucleation and growth of h-BN layers is found to occur isothermally, i.e., at constant elevated temperature, on the Cu surface during exposure to borazine. A Cu lattice expansion during borazine exposure and B precipitation from Cu upon cooling highlight that B is incorporated into the Cu bulk, i.e., that growth is not just surface-mediated. On this basis we suggest that B is taken up in the Cu catalyst while N is not (by relative amounts), indicating element-specific feeding mechanisms including the bulk of the catalyst. We further show that oxygen intercalation readily occurs under as-grown h-BN during ambient air exposure, as is common in further processing, and that this negatively affects the stability of h-BN on the catalyst. For extended air exposure Cu oxidation is observed, and upon re-heating in vacuum an oxygen-mediated disintegration of the h-BN film via volatile boron oxides occurs. Importantly, this disintegration is catalyst mediated, i.e., occurs at the catalyst/h-BN interface and depends on the level of oxygen fed to this interface. In turn, however, deliberate feeding of oxygen during h-BN deposition can positively affect control over film morphology. We discuss the implications of these observations in the context of corrosion protection and relate them to challenges in process integration and heterostructure CVD.P.R.K. acknowledges funding from the Cambridge Commonwealth Trust and the Lindemann Trust Fellowship. R.S.W. acknowledges a research fellowship from St. John’s College, Cambridge. S.H. acknowledges funding from ERC grant InsituNANO (no. 279342), EPSRC under grant GRAPHTED (project reference EP/K016636/1), Grant EP/H047565/1 and EU FP7 Work Programme under grant GRAFOL (project reference 285275). The European Synchrotron Radiation Facility (ESRF) is acknowledged for provision of synchrotron radiation and assistance in using beamline BM20/ROBL. We acknowledge Helmholtz-Zentrum-Berlin Electron storage ring BESSY II for synchrotron radiation at the ISISS beamline and continuous support of our experiments.This is the final version. It was first published by ACS at http://pubs.acs.org/doi/abs/10.1021/cm502603
    corecore