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Abstract 30 

Somatic embryogenesis is a type of plant cell totipotency where embryos develop from non-reproductive 31 

(vegetative) cells without fertilization. Somatic embryogenesis can be induced in vitro by auxins, and by ectopic 32 

expression of embryo-expressed transcription factors like the BABY BOOM (BBM) AINTEGUMENTA-LIKE 33 

APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) domain protein. These different pathways are thought to 34 

converge to promote auxin response and biosynthesis, but the specific roles of the endogenous auxin pathway 35 

in somatic embryogenesis induction have not been well-characterized. Here we show that BBM 36 

transcriptionally regulates the YUCCA3 (YUC3) and YUC8 auxin biosynthesis genes during BBM-mediated 37 

somatic embryogenesis in Arabidopsis (Arabidopsis thaliana) seedlings. BBM induced local and ectopic YUC3 38 

and YUC8 expression in seedlings, which coincided with increased DR5 auxin response and indole-3-acetic acid 39 

(IAA) biosynthesis and with ectopic expression of the WOX2 embryo reporter. YUC-driven auxin biosynthesis 40 

was required for BBM-mediated somatic embryogenesis, as the number of embryogenic explants was reduced 41 

by ca. 50% in yuc3 yuc8 mutants and abolished after chemical inhibition of YUC enzyme activity. However, a 42 

detailed YUC inhibitor time-course study revealed that YUC-dependent IAA biosynthesis is not required for the 43 

re-initiation of totipotent cell identity in seedlings. Rather, YUC enzymes are required later in somatic embryo 44 

development for the maintenance of embryo identity and growth. This study resolves a long-standing question 45 

about the role of endogenous auxin biosynthesis in transcription factor-mediated somatic embryogenesis and 46 

also provides an experimental framework for understanding the role of endogenous auxin biosynthesis in other 47 

in planta and in vitro embryogenesis systems.  48 

49 
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Introduction 50 

 Totipotency is the capacity of a single cell to regenerate into a complete organism (Condic, 2014). 51 

Totipotency is restricted to the zygote in sexually reproducing plants, but some asexually reproducing plants 52 

also produce embryos from vegetative cells and from unfertilized gametes (Pichot et al., 2001; Garcês et al., 53 

2007; Schmidt, 2020). Induced totipotency refers to the ability of cells to develop into embryos when cultured 54 

in vitro (Fehér, 2019). Somatic embryogenesis is a type of totipotency in which vegetative (non-gametophytic) 55 

cells are induced to develop into embryos after exposure to exogenous growth regulators, in particular the 56 

synthetic auxin 2,4-dichlorophenoxy acetic acid (2,4-D), or by ectopic expression of embryo or meristem 57 

identity transcription factors (Horstman et al., 2017a; Fehér, 2019; Karami et al., 2021b). Both inducer 58 

treatments promote cell division and also reprogram cells in a multicellular explant toward somatic 59 

embryogenesis or toward pluripotent pathways resulting in callus formation and organogenesis. How both 2,4-60 

D and transcription factors induce a subset of cells in an explant to develop specifically into somatic embryos is 61 

not known, but roles for chromatin modifications as well as for changes in expression of embryo identity genes 62 

and plant growth regulator pathway genes have been proposed (De-la-Peña et al., 2015; Horstman et al., 63 

2017a; Wang et al., 2020; Wójcik et al., 2020).  64 

 2,4-D efficiently induces somatic embryogenesis in a wide range of explants in the model plant Arabidopsis 65 

(Arabidopsis thaliana). As in other plants, Arabidopsis somatic embryos either develop directly from the 66 

explant (Luo and Koop, 1997; Gaj, 2001; Kobayashi et al., 2010) or indirectly from embryogenic callus (Ikeda-67 

Iwai et al., 2003; Su et al., 2009). In the direct system, fully differentiated embryos with root and shoot 68 

meristems and cotyledons develop in the presence of 2,4-D, while in the indirect system removal of 2,4-D from 69 

the culture medium is usually required to promote differentiation (patterning) of pro-embryogenic masses 70 

(PEMs), which are multicellular embryos lacking radial and apical-basal patterning (Halperin and Jensen, 1967; 71 

Gaj, 2011). Ectopic expression of specific embryo or meristem identity transcription factors also induces 72 

somatic embryo formation, but can do so in the absence of exogenous plant growth regulators (Horstman et 73 

al., 2017a). Among these are the LEAFY COTYLEDON 1 (LEC1) HAP3/CCAAT binding protein, the LEC2 B3-domain 74 

protein, and the BABY BOOM (BBM) clade of AINTEGUMENTA-LIKE (AIL) APETALA2/ETHYLENE RESPONSE 75 

FACTOR (AP2/ERF) transcription factors, which also includes the PLETHORA (PLT) proteins (Lotan et al., 1998; 76 

Stone et al., 2001; Gaj et al., 2005; Horstman et al., 2017b). Ectopic over-expression of these transcription 77 

factors in germinating seeds induces direct somatic embryo formation on above ground organs of seedlings, 78 

including the cotyledon petioles, tip and margin and the shoot apical meristem. The mechanisms driving 79 

transcription factor-induced somatic embryogenesis have not been well-studied, but like 2,4-D-induced 80 

somatic embryogenesis, are thought to require chromatin-level changes as well as deregulation of 81 

embryo/meristem identity transcription factor and auxin pathway genes (Horstman et al., 2017a; Tian et al., 82 

2020; Wójcik et al., 2020).  83 

 Transcriptional activation of auxin biosynthesis genes is one of the common regulatory points downstream 84 

of 2,4-D and transcription factor-induced somatic embryogenesis. Plants synthesize auxin by different 85 

pathways (Normanly, 2010; Zhao, 2014). The major auxin in Arabidopsis is indole-3-acetic acid (IAA), which is 86 

mainly synthesized through the TAA/YUC pathway (Zhao, 2014). Enzymatic activity of TRYPTOPHAN 87 
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AMINOTRANSFERASE ARABIDOPSIS1 (TAA1) and TAA1-RELATED PROTEINS (TAR) convert TRP into the 88 

intermediate product indole-3-pyruvic acid (IPyA), which is then converted into IAA by the YUCCA (YUC) flavin-89 

dependent monooxygenases (Stepanova et al., 2011). The Arabidopsis genome contains three TAA1/TAR genes 90 

and eleven YUCCA monooxygenase genes that are differentially expressed during plant development (Cheng 91 

et al., 2006; Cheng et al., 2007; Wang et al., 2011; Hentrich et al., 2013; Robert et al., 2013). 92 

Arabidopsis TAA/TARs and YUC proteins each function in a redundant manner, such that many of their 93 

functions only become evident in higher order mutant combinations (Cheng et al., 2006; Cheng et al., 2007; 94 

Wang et al., 2011; Robert et al., 2013). 95 

 Endogenous auxin, mainly IAA, is often elevated in cells or tissues undergoing 2,4-D-induced somatic 96 

embryogenesis (Michalczuk et al., 1992; Charrière et al., 1999; Pasternak et al., 2002). In the Arabidopsis direct 97 

somatic embryogenesis system, exposure of immature zygotic embryo explants to 2,4-D induces expression of 98 

YUC1 and YUC4 early in somatic embryogenesis, followed later by TAA1 and YUC10 expression (Wójcikowska et 99 

al., 2013). Single yuc mutants have no obvious phenotype under normal growth conditions, except the yuc8-1 100 

mutant, which shows reduced seed set (Cheng et al., 2006; Cheng et al., 2007; Ståldal et al., 2012). However, in 101 

2,4-D-induced somatic embryo cultures, single yuc2 and yuc4 mutants produce fewer embryogenic explants 102 

and fewer somatic embryos per explant compared to wild-type explants (Wójcikowska et al., 2013). In the 103 

indirect somatic embryogenesis system, where embryos develop after an initial callus phase, YUC gene 104 

expression (YUC1, YUC2, YUC4 and YUC6) is detected late in the development of embryogenic callus and then 105 

increases after transfer of the callus to 2,4-D-free medium (Bai et al., 2013). In this system, the quadruple yuc1 106 

yuc2 yuc4 yuc6 mutant shows a normal progression of somatic embryogenesis, while the yuc1 yuc4 yuc10 107 

yuc11 mutant produces only a few malformed somatic embryos (Bai et al., 2013). Treatment with the YUC 108 

enzyme inhibitor yucasin drastically reduces somatic embryo formation from Coffea canephora explants (Uc-109 

Chuc et al., 2020). It is clear that endogenous auxin biosynthesis has a role in 2,4-D-induced somatic embryo 110 

induction, but when and how auxin biosynthesis specifically promotes somatic embryogenesis is not known. 111 

 LEC and BBM/PLT transcription factors have also been shown to bind to and/or transcriptionally regulate 112 

auxin biosynthesis genes during normal plant development and under conditions that promote somatic embryo 113 

development. Ectopic LEC2 expression induces YUC2 and YUC4 expression early during somatic embryo 114 

development from seedlings (Stone et al., 2008), and ectopic LEC1 expression induces YUC gene expression 115 

during 2,4-D-induced somatic embryogenesis from immature zygotic embryos (YUC1, YUC4 and YUC10) and 116 

from seedlings (YUC10) (Junker et al., 2012; Wójcikowska et al., 2013). CHOTTO1 (CHO1)/EMBRYOMAKER 117 

(EMK)/ PLT5/AIL5 binds to and transcriptionally regulates YUC4 in the shoot apex (Pinon et al., 2013), while 118 

PLT2/AIL4 binds to and transcriptionally regulates YUC3 and YUC8 in the root tip (Santuari et al., 2016). 119 

BBM/AIL2 also binds to YUC3 and YUC8 during 2,4-D- and BBM-induced somatic embryogenesis, but it is not 120 

known if BBM also transcriptionally regulates these genes (Horstman et al., 2017b). Although auxin 121 

biosynthesis genes are downstream targets of embryo identity transcription factors during somatic 122 

embryogenesis, it is not known whether auxin biosynthesis is required to promote transcription-factor driven 123 

somatic embryogenesis.  124 



5 

 Here we examined the role of YUC-dependent IAA biosynthesis in BBM-induced somatic embryogenesis 125 

from Arabidopsis seedling cotyledons. Using a combination of genetic analysis, pharmacological inhibition and 126 

cell fate analysis we show that YUC-dependent IAA biosynthesis is essential for BBM-mediated somatic 127 

embryogenesis, but that this pathway is only required after the initiation of totipotency, for the subsequent 128 

proliferation and differentiation of embryogenic cells.  129 

130 

Results 131 

132 

Developmental steps in BBM-induced somatic embryogenesis 133 

The normal course of somatic embryogenesis in seedlings from dexamethasone (DEX)-treated 35S:BBM-GR 134 

seeds has been described previously (Horstman et al., 2017b; Godel-Jedrychowska et al., 2020) and is 135 

summarized in Figure 1. DEX treatment induces post-translational nuclear localization of the BBM-GR fusion 136 

protein (Horstman et al., 2017b), allowing comparison of samples with and without ectopic BBM activity. 137 

Embryogenic cell divisions are observed in the cotyledons of DEX-treated 35S:BBM-GR seedlings around day 3 138 

to day 4 of culture (Figure 1, A and B). These divisions begin at the cotyledon tip, followed by the cotyledon 139 

margin and shoot apex and are visualized as thickened, smooth, light green tissue. By days 6 to 8 of culture 140 

small embryogenic protrusions can be observed on the dividing tip (Figure 1, C and D) and by day 14 a mass of 141 

primary and secondary somatic embryos develops on the seedling cotyledon (Figure 1E). 142 

Previously we showed that the embryo identity and BBM direct target gene LEC1 is expressed on the 143 

cotyledon tip of DEX-treated 35S:BBM-GR seeds as early as one day after DEX treatment and becomes more 144 

highly expressed at the cotyledon tip and margin when these tissues begin to proliferate (Horstman et al., 145 

2017b). We followed the expression of the WOX2:NLS-3xYFP embryo marker to determine whether embryo 146 

identity genes that are not direct BBM targets are expressed in the same way. During the first two days of 147 

culture WOX2:NLS-3xYFP expression was detected in both control (mock-treated) and DEX-treated seedlings 148 

throughout the seedling, and in the cotyledon on the abaxial and adaxial surface (Supplemental Figure S1, A 149 

and B, Figure 8). The nuclear WOX2-YFP signal could no longer be detected in the control seedling cotyledons 150 

from day 3 onward (Supplemental Figure S1C), but was maintained and became restricted to the tip of the 151 

cotyledon in the DEX-treated seedlings (Figure 1, F and G). During day 6 to 8 of culture, WOX2-YFP expression 152 

was observed on the explant in the region where embryos develop and in the embryogenic growths of most 153 

DEX-treated control seedlings (Figure 1, H and I). In the 35S: BBM-GR line used in this study, 10-15% of the 154 

seedlings do not form somatic embryos and the same proportion of seedlings lacked WOX2-YFP expression in 155 

the cotyledon (Supplemental Figure 1D). By day 14 of culture WOX2-YFP expression could only be detected in 156 

ca. 20% of these embryos (Supplemental Table S1). 157 

The above data indicate that expression of the BBM direct target gene LEC1 precedes expression of the 158 

non-target gene WOX2. Both LEC1 and WOX2 are initially expressed on the cotyledon tip, the site where 159 

somatic embryo formation is first initiated. LEC1 is a major regulator of early and late embryo development 160 

pathways and overexpression of LEC1 induces spontaneous somatic embryogenesis. LEC1 also acts a pioneer 161 

factor at the FLOWERING LOCUS C gene by promoting an active chromatin state (Tao et al., 2017). 162 
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Activation of LEC1 expression by BBM might therefore be required for promoting chromatin accessibility 163 

at BBM target loci and/or for parallel activation of early embryo development genes. 164 

165 

BBM regulates auxin pathway genes 166 

The BBM transcription factor binds a number of key regulatory genes during 2,4-D and BBM-induced 167 

somatic embryogenesis, including genes that promote in vitro regeneration and meristem identity and 168 

proliferation (Supplemental Data Set S1; Horstman et al., 2015; Horstman et al., 2017b). Among the direct BBM 169 

gene targets are also a number of auxin pathway genes, including the YUC3, YUC8 and TAA1 auxin biosynthesis 170 

genes. The BBM-binding sites at these loci are shown in Figure 2A-C. To determine whether BBM also 171 

transcriptionally regulates these genes, we analyzed their expression using RT-qPCR in DEX-treated 35S:BBM-172 

GR seeds at 8, 24 and 48 h after imbibition (pre-germination). YUC3 and YUC8 expression was significantly 173 

upregulated in DEX-treated 35S:BBM-GR seeds compared to DEX-treated wild-type (WT) seeds, with YUC3 174 

expression (48 h) lagging behind that of YUC8 (8 h), while TAA1 expression was not significantly regulated 175 

(Figure 2D). We therefore focused our efforts on YUC3 and YUC8 as candidate early auxin biosynthesis target 176 

genes. 177 

Next, we examined the spatial and temporal regulation of YUC3/YUC8 expression in 35S:BBM-GR seeds 178 

carrying the YUC3:erGFP or the YUC8:GUS reporters. Seeds were imbibed and then cultured with or without 10 179 

µM DEX. In WT Arabidopsis seedlings, YUC3 is expressed in the root meristem and root-hypocotyl transition 180 

zone and YUC8 is expressed in the root vascular tissue and meristem (Ståldal et al., 2012; Chen et al., 2014; 181 

Santuari et al., 2016) (Figure 3) BBM-enhanced YUC3 expression was observed in the root-hypocotyl transition 182 

zone from day two of culture (Figure 3, B, C, G and H), followed by weak, but consistent ectopic expression on 183 

the proximal cotyledon margin on day 3 (Figure 3, C and H) and the entire cotyledon surface by day 4 (Figure 3, 184 

D, E, I and J). Enhanced YUC8 expression in the hypocotyl vascular tissue was observed after one day of culture 185 

(Figure 3, L and Q), and 35S:BBM-induced changes in hypocotyl morphology were already visible after two days 186 

of culture (Figure 3, M and R). Ectopic expression of YUC8 was observed in the cotyledons starting from day 187 

three of culture (Figure 3, N and S). As in the root-hypocotyl, YUC8 was also expressed in the cotyledon vascular 188 

tissue. After 6 days of culture, areas lacking YUC3 and YUC8 expression were observed in a region close to the 189 

cotyledon tip (Figure 3, J and T), corresponding to the first sites of somatic embryo induction in DEX-treated 190 

35S:BBM-GR lines (Figure 1, B and C). Notably, expression of a YUC3:GUS reporter that lacks the BBM binding 191 

site motif and that is not expressed in the root meristem (Chen et al., 2014) did not show altered expression in 192 

DEX-treated 35S:BBM-GR seedlings (Supplemental Figure S2, B and C).  193 

Together these analyses show that BBM transcriptionally regulates YUC3 and YUC8 expression early during 194 

somatic embryo induction, both in their native expression domain in the root/hypocotyl, as well as ectopically 195 

in the cotyledon. Ectopic YUC expression in cotyledons also coincided with the onset of ectopic WOX2 196 

expression (Figure 1G), suggesting a major change in cotyledon cell fate at this time point. BBM-induced 197 

YUC3/YUC8 expression in cotyledons lagged behind YUC3/YUC8 expression in the root/transition zone. 198 

Germination relies mainly on translation of stored mRNAs (Sano et al., 2020), and post-germination light-grown 199 

cotyledons only undergo a few cell divisions (Sano et al., 2020), thus de novo BBM-induced transcription in 200 
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cotyledons might require activation of cell division and/or reprogramming of chromatin to a transcriptionally 201 

active state, processes that are already active in the root and hypocotyl. 202 

203 

BBM enhances auxin response and biosynthesis 204 

The above results indicate that YUC3 and YUC8 are transcriptionally regulated by BBM early during somatic 205 

embryo induction. We therefore investigated whether these changes are reflected in increased auxin response 206 

and IAA levels in seedlings.  207 

We used DR5 reporters to follow the temporal and spatial dynamics of auxin response during BBM-208 

mediated somatic embryogenesis. 35S:BBM-GR DR5 seeds were germinated with or without 10 μM DEX and 209 

DR5 expression followed in the explants for seven days (Figure 4). Weak DR5 expression was observed on the 210 

adaxial and abaxial surfaces of cotyledons (Figure 4, A and D) of both DEX-treated and control seedlings after 211 

one day of culture. From day three of culture onward, DR5 expression in the vascular tissue extended further 212 

into the root elongation zone in DEX-treated seedlings than in control seedlings (Figure 4, B and E). At this time, 213 

DR5 expression was no longer visible in control cotyledons, but broadened and increased in intensity on the 214 

adaxial surface of cotyledons from DEX-treated samples (Figure 4, C and F), where it localized to the adaxial 215 

epidermal/subepidermal layers and the vascular bundles (Figure 4G). In the following days, DR5 expression 216 

continued to increase in DEX-treated seedlings, especially along the cotyledon margin (Figure 4, H and I). 217 

Starting around day 4, an auxin minimum as visualized by low DR5 expression (Figure 4, H-K) could be seen next 218 

to the cotyledon tip where embryogenic protrusions develop. 219 

Auxin response reporters measure the sum of auxin signaling processes, and since BBM binds different 220 

types of auxin-pathway genes (Horstman et al., 2017b), we determined whether the enhanced DR5 response 221 

observed in BBM overexpression lines can be explained by changes in IAA levels. WT seeds and seeds from two 222 

independent 35S:BBM-GR lines differing in somatic embryo production rate were cultured with or without DEX 223 

for three days before measuring IAA and the IAA catabolite oxindole-3-acetic acid (oxIAA). Oxidation of IAA to 224 

oxIAA reduces auxin activity and plays an important role in maintaining auxin homeostasis (Stepanova and 225 

Alonso, 2016). Seedlings of both 35S:BBM-GR lines treated with DEX showed higher IAA levels than the WT 226 

seedlings and 35S:BBM-GR seedlings without DEX treatment (Figure 4L), but only the increase of IAA content in 227 

line 2 was significant compared to the WT control. The different IAA levels in these two lines might reflect the 228 

differences in penetrance of their somatic embryogenesis phenotypes (50% in line 1 and 100% in line 2).  229 

The above data indicate that BBM overexpression induces a de novo auxin response on the adaxial 230 

cotyledon surface. The spatial localization of the DR5 auxin response in DEX-treated 35S:BBM-GR and WT 231 

seedlings started to diverge around the third day of culture, the time point at which YUC3/YUC8 gene 232 

expression and IAA levels also increased in DEX-treated 35S:BBM-GR cotyledons. This suggests that the 233 

enhanced auxin response observed in 35S:BBM-GR seedlings is due, at least in part, to increased IAA 234 

biosynthesis. This increase in YUC3/YU8 and DR5 expression was followed a few days later by DR5 and 235 

YUC3/YUC8 expression minima at the site of multicellular somatic embryo formation on the cotyledon tip. 236 

Together this data suggests that enhanced/ectopic YUC expression and IAA biosynthesis coincides with the 237 
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establishment of totipotent cell fate, but that multicellular somatic embryo development takes place in a low 238 

auxin response field.  239 

240 

YUC3 and YUC8 are required for efficient BBM-mediated somatic embryogenesis 241 

To determine the roles of YUC3 and YUC8 in BBM-induced somatic embryogenesis, we generated two 242 

independent yuc3 yuc8 double mutant lines in a 35S:BBM-GR background using CRISPR-Cas9 mutagenesis 243 

(Supplemental Figure S3). Both independent yuc3 yuc8 mutants contained the same yuc3CR1 mutation, an 848 244 

bp deletion plus a 38 bp insertion that removed part of the promoter and first exon (Supplemental Figure S3, A 245 

and B). The yuc8CR1 mutation has a 1 bp insertion downstream of and close to the translational start site (TSS), 246 

resulting in a premature stop codon (Supplemental Figure S3, A and B). The yuc8CR2 mutant line has a 3 bp 247 

deletion at the same position as the yuc8CR1 mutation resulting in loss of one amino acid (Supplemental Figure 248 

S3, A and B). This amino acid is not located in previously described functional domains (Supplemental Figure S3 249 

C) and might not affect the protein’s function. However, both the yuc3CR1 yuc8CR1 and yuc3CR1 yuc8CR2 mutants 250 

showed the reduced seed set phenotype that was previously described for the yuc8-1 allele (Supplemental 251 

Figure S3, D) (Ståldal et al., 2012). This suggests that the single amino acid deletion in the yuc8CR2 allele disrupts 252 

YUC8 function. Other than the reduced seed set phenotype, neither of the two independent yuc3CR yuc8CR 253 

double mutant lines showed obvious phenotypic differences from WT seedlings under standard growth 254 

conditions.  255 

To evaluate the effect of the yuc3CR yuc8CR double mutants on BBM-induced somatic embryogenesis, we 256 

cultured control 35S:BBM-GR seeds and seeds from the two 35S:BBM-GR yuc3CR yuc8CR lines for 14 days with 257 

10 µM DEX and categorized the explants into three groups: explants with somatic embryos, explants with 258 

ectopic shoots but no somatic embryos, and explants without any ectopic structures (Figure 5). DEX-treated 259 

explants from both 35S:BBM-GR yuc3CR yuc8CR lines showed a statistically significant reduction in the capacity 260 

for somatic embryogenesis (ca. 50%) compared to the DEX-treated 35S:BBM-GR control explants (ca. 90%). 261 

Ectopic shoot formation was not affected in the DEX-treated 35S:BBM-GR yuc3CR yuc8CR lines compared to the 262 

control. These results are in line with observations in 2,4-D-induced direct and indirect somatic embryo 263 

cultures, where mutation of different YUC genes was shown to be detrimental for somatic embryogenesis (Bai 264 

et al., 2013; Wójcikowska et al., 2013). 265 

266 

Auxin biosynthesis is required in a narrow developmental window for efficient BBM-induced somatic 267 

embryogenesis  268 

Auxin biosynthesis genes are direct targets of embryo identity transcription factors like BBM, LEC1 and LEC2 269 

and these proteins also control each other’s expression through complex transcriptional feedback loops (Tian 270 

et al., 2020; Wójcik et al., 2020). Given the possibility that additional YUC genes might be directly or indirectly 271 

regulated during BBM-induced somatic embryogenesis, we used a pharmacological approach to inhibit overall 272 

YUC activity. This approach also allowed us to dissect the role of YUC-dependent IAA biosynthesis in time by 273 

performing time course inhibitor addition-removal experiments.  274 
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35S:BBM-GR seeds were cultured for 14 days in liquid medium with 10 µM DEX to activate the BBM protein. 275 

The YUC enzyme inhibitor yucasin (Nishimura et al., 2014) or the more stable analog yucasin difluorinated 276 

analog (YDF) (Tsugafune et al., 2017) (100 µM) were added to or removed from the cultures at different time 277 

points to determine when YUC-mediated IAA biosynthesis plays a role in BBM-induced somatic embryogenesis. 278 

After three to four days of culture, the cotyledon margins of DEX-treated 35S:BBM-GR seedlings thicken due to 279 

increased cell division (Figure 1B). Multiple embryogenic protrusions develop from the adaxial surface of the 280 

cotyledon tip and margin around day six of culture, followed by formation of histodifferentiated somatic 281 

embryos by 10 days of culture (Figure 1, Figure 6F). By contrast, the cotyledons of DEX-treated 35S:BBM-GR 282 

seedlings treated with 100 µM YUC enzyme inhibitor from day 0, day 2 and day 4 onward developed into white 283 

callus-like structures, with or without white, dense amorphous structures (Figure 6, A-C, F; Supplemental Figure 284 

S4, A-C, F). By contrast, seedlings from cultures treated with YUC enzyme inhibitor from day 6 onward formed 285 

somatic embryos were similar to the control samples, except that the number of somatic embryos was greatly 286 

reduced compared to control cultures (Figure 6, D and E; Supplemental Figure S4, D and E). Continuous 287 

treatment of DEX in combination with lower YUC enzyme inhibitor concentrations also reduced somatic 288 

embryo formation in 35S:BBM-GR seedlings, but to a lesser extent than with the 100 µM treatment 289 

(Supplemental Figure S5, A-E). The enhanced DR5:GFP expression in cotyledons of four-day-old seedlings 290 

treated continuously with DEX was abolished after YUC enzyme inhibitor treatment (Supplemental Figure S5, K, 291 

L and O), suggesting that YUC enzyme inhibitor treatment reduced BBM-induced IAA biosynthesis in the 292 

cotyledon.  293 

Next, we performed YUC inhibitor removal experiments to more accurately define the time point at which 294 

inhibition of auxin biosynthesis affects the progression of somatic embryogenesis. DEX and YUC enzyme 295 

inhibitor were added on day 0 of culture and then the inhibitor was removed on day 4, day 6, day 8 or day 10 of 296 

culture (Figure 6, G-J; Supplemental Figure S4, G-J). Somatic embryos developed on the cotyledons of DEX-297 

treated 35S:BBM-GR seedlings when YUC inhibitors were removed on or before day six, but the number of 298 

somatic embryos was reduced compared to non-treated control samples (Figure 6, G and H; Supplemental 299 

Figure S4, G and H). Somatic embryo formation could not be rescued when YUC enzyme inhibitor was removed 300 

after six days of treatment (Figure 6, I and J; Supplemental Figure S4, I and J).  301 

Together these results suggest that YUC activity is essential for the normal progression of BBM-mediated 302 

somatic embryogenesis between the fourth and sixth day of culture. The YUC inhibitor concentrations that 303 

affect somatic embryo formation (25-100 µM; Supplemental Figure S5, A-E) are higher than those that affect 304 

root development in WT plants (1-10 µM) (He et al., 2011), but similar to the concentration range (20-100 µM) 305 

that complemented the YUC1 overexpression phenotype (Nishimura et al., 2014). This suggests that BBM 306 

induces relatively high IAA levels in cotyledons or that cotyledons and developing somatic embryos are less 307 

sensitive to YUC enzyme inhibition than other tissues.  308 

TAA/TAR proteins convert TRP to IPyA, which is then converted to IAA by YUC proteins. The TAA1 gene is 309 

also bound by BBM during BBM- and 2,4-D-induced somatic embryogenesis but was not transcriptionally-310 

regulated by BBM during the first two days of culture (Figure 2, C and D). However, blocking TAA1/TAR enzyme 311 

activity in 35S:BBM-GR seedlings with kynurenine (kyn), a chemical inhibitor of TAA1/TAR activity (He et al., 312 



10 

2011) severely impaired somatic embryo formation (Supplemental Figure S5, F-J) and also abolished the BBM-313 

induced DR5 response (Supplemental Figure S5, M-O). This inhibitory effect was not observed when kyn was 314 

added to the medium on day 6 of culture (Supplemental Figure S6, D and E) or when kyn was removed by day 315 

eight of culture (Supplemental Figure S6, F-I), although fewer embryos developed than in the control samples. 316 

Thus TAA1/TAR-mediated auxin biosynthesis is also required for BBM-induced somatic embryogenesis, 317 

although the window in which TAA1/TAR enzymes are required is slightly broader than for YUC enzymes. 318 

319 

Auxin biosynthesis is required for the maintenance of BBM-induced totipotency 320 

To determine how reduced IAA levels affect the progression of BBM-mediated somatic embryogenesis, we 321 

examined the development of auxin-inhibitor-treated explants using thin sections and embryo identity 322 

reporters.  323 

35S:BBM-GR seeds were germinated in medium containing DEX (control) with or without YUC enzyme 324 

inhibitor, which was added to the cultures during (day 0, day 4) or after (day 7) the critical time point for 325 

somatic embryo development. Thin sections were made six and 12 days after the start of culture. Thin sections 326 

of DEX-treated seedling cotyledons showed that the mesophyll and vascular cells had divided prolifically during 327 

the first 6 days of culture (Figure 7A). The proliferating adaxial mesophyll cells and cotyledon tip formed a 328 

continuous mass of cytoplasm-rich cells, which are characteristic for totipotent/meristematic cells (Huang and 329 

Yeoman, 1984; Prime et al., 2000; Kurczyńska et al., 2007; Verdeil et al., 2007; Godel-Jedrychowska et al., 2020). 330 

Callus-like cells, characterized by their reduced cytoplasmic staining, were visible on the adaxial surface of the 331 

cotyledon in the same explants (Figure 7A). By day 12 of culture, the DEX-treated seedlings had formed 332 

(secondary) somatic embryos with defined apical-basal polarity (Figure 7B). When YUC enzyme inhibitor was 333 

added with DEX at the start of culture, the seedlings still produced cytoplasm-rich cells on the cotyledon 334 

surface, but with less overall cell proliferation compared to DEX-treated samples (Figure 7D). In addition, 335 

interspaced cell clusters formed along the adaxial surface of the cotyledon instead of the continuous band of 336 

proliferating cells observed in DEX-treated seedlings. These cell clusters became more callus-like by the 12th 337 

day of culture (Figure 7E). The cells in these callus-like clusters were covered by loosely connected epidermal 338 

cells, rather than densely packed cells in the control samples, indicating that they lost their capacity for 339 

meristematic/totipotent cell proliferation. The cotyledons of seedlings treated with YUC inhibitor on day 4 340 

resembled cotyledons from seedlings treated with inhibitor from day 0 onward (Figure 7C). When YUC inhibitor 341 

was added on day 7 of culture, somatic embryos with visible apical-basal polarity were formed on the 342 

cotyledons (Figure 7F), but the number of somatic embryos was reduced compared to the DEX-treated control. 343 

These data indicate that auxin biosynthesis is not absolutely required for the de novo induction of 344 

meristematic/totipotent cell proliferation, but rather is required to sustain these meristematic/totipotent cell 345 

divisions. These results also support the idea that auxin biosynthesis is also required after day 6 of culture for 346 

efficient differentiated somatic embryo formation.  347 

To determine how reduced IAA levels alter embryo fate during BBM-induced somatic embryogenesis, we 348 

followed the expression of the WOX2:NLS-3xYFP embryo identity reporter in DEX-treated 35S:BBM-GR 349 

seedlings that were cultured in the presence of absence of YUC enzyme inhibitors. WOX2-YFP expression in 350 
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seedlings treated continuously from day 0 with 100 µM YUC enzyme inhibitor was similar to that of the control 351 

seedlings until day 4 of culture (Figure 1F, Figure 8B). The number of WOX2-YFP-positive seedlings decreased to 352 

half that of the control by day 8 of culture and to zero by day 14 (Supplemental Table S1; Figure 8B). When YDF 353 

was added on day 4 of culture, the initial proportion of WOX2-YFP-expressing seedlings on day 6 and day 8 was 354 

similar to that of the DEX-treated control, but then decreased to zero on day 14 (Supplemental Table S1; Figure 355 

8C). Likewise, when YDF was added on day 0 and then removed on day 6 of culture, the number of seedlings 356 

initially showing WOX2-YFP expression was similar to the control, but then decreased to zero by day 14 of 357 

culture (Supplemental Table S1; Figure 8D). 358 

Taken together, these histology and cell fate experiments confirmed our observations on whole mount 359 

samples i.e. that YUC-dependent IAA biosynthesis is not required for the initiation of embryo identity at the 360 

cotyledon tip in BBM overexpression lines, but is required later, in a narrow developmental window between 361 

day 4 and 6 of culture, to maintain embryo identity and promote the development of embryogenic cell 362 

protrusions into histodifferentiated embryos. In the absence of YUC activity these embryogenic cells develop 363 

into callus-like structures.  364 

365 

DISCUSSION 366 

Ectopic expression of the AINTEGUMENTA-LIKE (AIL) transcription factor BABY BOOM (BBM) induces 367 

spontaneous adventitious organ formation (pluripotency) and embryogenesis (totipotency) (Gordon-Kamm et 368 

al., 2019; Vijverberg et al., 2019). In WT plants, in vitro adventitious organ formation and somatic 369 

embryogenesis usually rely on exogenous auxin application, either alone or in combination with other 370 

hormones or abiotic stress treatments. A genetic relationship between BBM-like AILs and auxin in shoot and 371 

root meristem development, as well as binding and/or direct transcriptional regulation of YUC genes by AIL-372 

family members has been shown (Pinon et al., 2013; Santuari et al., 2016), but neither has been described in 373 

the context of induced pluripotent or totipotent growth. Here we show that BBM regulates YUC gene 374 

expression and that YUC-dependent auxin biosynthesis has essential, but relatively late functions in BBM-375 

mediated somatic embryogenesis. Our data suggest a two-step model in which BBM-induces expression of 376 

embryo identity genes like LEC1, LEC2 and FUSCA3 (FUS3) to establish cell totipotency (Horstman et al., 2017b), 377 

followed by induction of auxin biosynthesis to maintain embryo division and growth. 378 

379 

Multiple roles for auxin biosynthesis 380 

Here we show that ectopic BBM expression induces expression of the canonical auxin biosynthesis pathway 381 

genes YUC3 and YUC8 (Figure 2D). Both of these genes are direct BBM targets in 2,4-D and BBM-induced 382 

somatic embryo cultures (Figure 2, A and B). BBM is expressed in the seedling root tip and throughout the 383 

zygotic embryo as early as the four-cell stage and becomes basally localized from the heart stage onward 384 

(Galinha et al., 2007; Horstman et al., 2015). Both YUC3 and YUC8 are expressed in the seedling root tip (Chen 385 

et al., 2014; Santuari et al., 2016) (Figure 3), and in the zygotic embryo YUC3 is expressed in the suspensor and 386 

YUC8 in the basal region of the embryo proper (Robert et al., 2013). This overlap in BBM and YUC3/YUC8 387 
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expression suggests that BBM also regulates YUC3 and YUC8 expression during zygotic embryogenesis and root 388 

development in planta. 389 

Reporter analysis showed that 35S:BBM-GR overexpression induces YUC3 and YUC8 expression in the root 390 

and hypocotyl, followed by expression in the cotyledons (Figure 3). The expansion of BBM-induced ectopic 391 

YUC3/YUC8 reporter expression from the below ground to the above ground organs reflects the gradual 392 

increase in transcript levels detected by qPCR (Figure 2D). The increase in YUC expression in roots and 393 

cotyledons was also mirrored by increased DR5 expression in the same organs and by increased IAA 394 

biosynthesis (Figure 4). Together these results suggest that BBM induces enhanced and ectopic auxin 395 

biosynthesis gene expression and a concomitant increase in auxin levels.  396 

We also observed that embryogenic protrusions develop in areas of low (DR5) auxin response (Figure 4) and 397 

low YUC3/YUC8 expression (Figure 3). In Arabidopsis, DR5 expression and auxin accumulation (as measured by 398 

the R2D2 (Ratiometric version of 2D2’s) reporter; Liao et al., 2015) are only reliably detected starting at the 8-399 

cell embryo stage. This initial auxin response in the embryo proper is largely due to PIN-mediated auxin 400 

transport from the suspensor and from the surrounding maternal tissues (Friml et al., 2003; Robert et al., 401 

2013). YUC and TAA1/TAR auxin biosynthesis genes are expressed later in zygotic embryos, in the embryo 402 

proper and suspensor from the 16-cell embryo stage onward (Stepanova et al., 2008; Robert et al., 2013). In 403 

35S:BBM-GR explants, DR5 and YUC3 are initially expressed throughout the cotyledon and YUC8 in the 404 

cotyledon vasculature. Later, DR5 and YUC3/YUC8 expression is absent at the sites where WOX2-YFP 405 

expression is ectopically induced and where multicellular embryos emerge on the cotyledon tip and margin 406 

(Godel-Jedrychowska et al., 2020) (Figure 1, F-I, Figure 3, J and T, Figure 4, H-K). Reduced DR5 and YUC 407 

expression might simply reflect a switch in development from single or few-celled embryogenic structures to 408 

larger embryogenic clusters, analogous to early pre-globular stage zygotic embryos, where neither DR5 nor 409 

characterized YUC genes are expressed. Alternatively, we have shown previously that this decrease in DR5 410 

expression is accompanied by and requires increased callose production in plasmodesmata adjacent to sites of 411 

WOX2-YFP expression (Godel-Jedrychowska et al., 2020). Blocking callose production in DEX-treated 35S:BBM-412 

GR seedlings prevents the formation of an auxin response minimum and completely blocks somatic embryo 413 

development. We hypothesized that auxin accumulation must be reduced locally to allow organized embryo 414 

growth and that callose deposition in surrounding plasmodesmata prevents passive auxin re-entry into these 415 

cells. Thus, a combined action of reduced auxin accumulation, reduced local auxin biosynthesis and reduction 416 

of the size of molecules that can pass through plasmodesmata might create a low auxin field that promotes the 417 

growth of multicellular embryogenic growth protrusions. Auxin biosynthesis inhibitor experiments showed that 418 

auxin is required later for further growth of these embryogenic protrusions into differentiated embryos; 419 

blocking YUC-dependent auxin biosynthesis results in conversion of embryogenic cells to callus-like structures 420 

rather than somatic embryos. At this point, callose deposition and WOX2-YFP expression colocalize in the same 421 

cells, as embryogenic protrusions increase in size and differentiate into somatic embryos (Godel-Jedrychowska 422 

et al., 2020). Together these observations suggest a two-step dynamic and local regulation of auxin to allow 1) 423 

development of multicellular embryogenic cell clusters in a low auxin/auxin response area, followed by 2) 424 

development of these structures into histodifferentiated embryos with zygotic embryo-like auxin responses. 425 
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426 

A positive transcriptional feedback loop for somatic embryogenesis 427 

Somatic embryo formation was completely abolished when DEX-treated 35S:BBM-GR explants were treated 428 

continuously or before the sixth day of culture with YUC enzyme inhibitors, but the somatic embryogenesis rate 429 

in the 35S:BBM-GR yuc3CR yuc8CR lines was only reduced to about half of the control 35S:BBM-GR line (Figure 430 

5). This result suggests that YUC3 and YUC8 are not the only YUC enzymes required for BBM-induced somatic 431 

embryogenesis. Previously we found that BBM also binds the LEAFY COTYLEDON1 (LEC1), LEC2 and FUS3 432 

transcription factor genes (Horstman et al., 2017b). Ectopic LEC1 expression was also induced in DEX-treated 433 

35S:BBM-GR seedlings during the first day of culture. LEC1 and LEC2 expression in seedlings induces 434 

respectively, YUC8 and YUC10 (Junker et al., 2012; Huang et al., 2015) and YUC1, YUC4 and YUC10 expression 435 

(Wójcikowska et al., 2013). LEC2 and FUS3 also cooperatively promote YUC4 expression during lateral root 436 

formation (Wójcikowska et al., 2013; Tang et al., 2017). The LEC transcription factors might partly compensate 437 

for the reduced auxin biosynthesis in yuc3CR yuc8CR mutant lines by inducing expression of other YUC genes. 438 

The known positive transcriptional interactions between the BBM and LEC transcription factors and their 439 

respective target genes (Horstman et al., 2017a; Tian et al., 2020) suggest that a positive feedback loop is 440 

established that maintains both embryo identity and auxin biosynthesis during BBM-induced somatic 441 

embryogenesis. 442 

443 

Auxin requirement during embryogenesis 444 

In Arabidopsis, YUC gene expression is activated during 2,4-D-induced somatic embryogenesis in explants 445 

undergoing direct and indirect somatic embryogenesis (Bai et al., 2013; Wójcikowska et al., 2013). During 2,4-446 

D-induced direct somatic embryogenesis from Arabidopsis immature zygotic embryo explants, overexpression447 

of LEC2 can compensate for treatment with a suboptimal 2,4-D concentration or for treatment with auxins that 448 

are poor inducers of somatic embryogenesis, like indole-3-acetic acid (IAA) or 1-naphthaleneacetic acid (NAA) 449 

(Wójcikowska et al., 2013). The lec1 and lec2 loss-of-function mutants show a severe reduction of the number 450 

of embryogenic explants in the presence of 2,4-D, as well as a shift from direct to indirect (callus-derived) 451 

somatic embryogenesis (Gaj et al., 2005). Conversely, ectopic expression of LEC2 in the presence of an optimal 452 

concentration of 2,4-D negatively affects somatic embryo formation, as it delays and reduces embryo induction 453 

and induces callus and shoot-like structures instead of somatic embryos (Ledwoń and Gaj, 2009). Although IAA 454 

levels were not measured directly in these studies, these results suggest that tight regulation of auxin levels is 455 

required to promote somatic embryogenesis: both too little and too much endogenous or exogenous auxin can 456 

inhibit somatic embryo formation, absolutely and/or in favor of shoot or callus production (Ledwoń and Gaj, 457 

2009).  458 

The above studies on 2,4-D-induced somatic embryogenesis in WT and different LEC backgrounds 459 

demonstrate a role for YUC-dependent auxin biosynthesis in promoting efficient somatic embryogenesis. 460 

However, these studies did not determine when and for which aspect of somatic embryogenesis YUC-461 

dependent IAA biosynthesis was required. Our analyses indicated that both YUC expression and IAA levels 462 

increase as early as three days after BBM activation (Figure 3; Figure 4L). These changes also correspond with 463 
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onset of embryo marker gene expression, including WOX2-YFP (Figure 1). However, our pharmacological 464 

experiments using YUC enzyme inhibitors showed that YUC-TAA1/TAR-dependent IAA biosynthesis is not 465 

required at this time point for the re-initiation of totipotent growth (Figure 6). YUC-dependent IAA biosynthesis 466 

is required later, between day 4 and day 6 of culture, for the maintenance of embryo identity and for embryo 467 

growth and histodifferentiation. In explants treated continuously or up until the sixth day of culture with YUC 468 

enzyme inhibitors, cytoplasm-rich embryogenic protrusions do not progress to patterned embryos, but rather 469 

form callus-like structures (Figure 7). How does BBM-induced auxin biosynthesis maintain embryo growth and 470 

development? Recently, Karami et al showed that induction of cell totipotency during 2,4-D and 35S:AHL15-471 

induced somatic embryogenesis does not require the auxin efflux and influx machinery (Karami et al., 2021a). 472 

Rather, auxin transport is required later, for the proper transition of embryogenic cells to multicellular embryos 473 

and for correct embryo differentiation. Similarly, it is likely that endogenous auxin supplied by BBM signaling is 474 

also required to establish the auxin gradients needed for embryo outgrowth and patterning. 475 

During zygotic embryogenesis, YUC and TAA1 genes are expressed relatively late, during the transition from 476 

the globular/heart stage to the torpedo stage, where they are required for correct embryo patterning 477 

(Stepanova et al., 2008; Robert et al., 2013). TAA1/TAR and YUC genes are expressed earlier in the surrounding 478 

maternal ovule and seed coat, but maternally-supplied auxin only appears to be required for proper embryo 479 

patterning (Robert et al., 2018). Although a complete description of all YUC genes and other TRP-independent 480 

IAA synthesis genes during zygotic embryogenesis is currently not available, this data, together with our 481 

observations on BBM-induced totipotency suggest that YUC-dependent auxin biosynthesis is not required for 482 

the initiation of embryo identity per se. By contrast, TRP-independent IAA biosynthesis has been shown to be 483 

essential for early zygotic embryo viability and patterning (Wang et al., 2015). TRP-independent auxin 484 

biosynthesis genes have not been identified as direct BBM targets, but might act downstream of other BBM 485 

target genes. Recently, Li et al., (2021) described a developmental pathway in which MATERNAL EFFECT 486 

EMBRYO ARREST45 (MEE45) induces the AIL gene AINTEGUMENTA, which in turn regulates YUC expression in 487 

the ovule integument to control embryo size. These results are in line with our observations on the role of YUC-488 

dependent auxin biosynthesis in maintaining embryogenic cell divisions in vitro and suggest that similar seed 489 

functions might be co-opted by embryo identity transcription factors like BBM in embryogenic explants.  490 

491 

Conclusion 492 

The importance of auxin for in vitro somatic embryogenesis is apparent in its widespread use as an 493 

exogenous inducer and in the requirement for endogenous auxin for efficient somatic embryo production. 494 

‘Totipotency’ transcription factors are rapidly induced in response to 2,4-D, but also induce somatic 495 

embryogenesis in the absence of exogenous auxin (Ledwoń and Gaj, 2009; Ledwoń and Gaj, 2011; Horstman et 496 

al., 2017a; Tian et al., 2020). These transcription factors also bind to and/or transcriptionally regulate auxin 497 

biosynthesis genes, making them good candidates for direct regulators of auxin biosynthesis in different 498 

somatic embryogenesis systems. We show that YUC-dependent auxin biosynthesis is required to maintain 499 

somatic embryo identity and promote growth, but not for the cell fate transition to embryogenesis. De novo 500 
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induction of both embryo identity transcription factors and auxin biosynthesis therefore ensures that 501 

embryogenic cells proliferate and develop into somatic embryos. 502 

503 

Materials and methods 504 

505 

Plant material and growth conditions 506 

The 35S:BBM-GR, WOX8gΔ:NLS-venusYFP3 (referred to here as WOX2:NLS-3xYFP), YUC8:GUS, YUC3:GUS, 507 

YUC3:erGFP, DR5v2:ntdTomato, DR5:GUS and DR5:GFP lines were described previously (Benková et al., 2003; 508 

Růžička et al., 2007; Breuninger et al., 2008; Passarinho et al., 2008; Chen et al., 2014; Liao et al., 2015; Santuari 509 

et al., 2016). Due to BBM silencing upon outcrossing (Horstman et al., 2017b), the majority of 35S:BBM-GR lines 510 

containing reporter constructs were made by either transforming the 35S:BBM-GR vector to the reporter line 511 

(YUC8:GUS and WOX2:NLS-3xYFP) and then selecting highly embryogenic lines, or transforming the reporter 512 

vectors (DR5v2, YUC3:erGFP) to an existing embryogenic 35S:BBM-GR line. In the latter case, the transgenic 513 

lines were selected based on reporter expression. For the DR5:GUS and DR5:GFP reporter lines, crosses were 514 

made with a homozygous 35S:BBM-GR line and the progeny selected over four generations until non-silenced 515 

homozygous lines with at least 90% penetrance of embryogenic explants and 100% reporter gene expression 516 

were recovered.  517 

Seeds were sterilized with liquid bleach as described previously (Horstman et al., 2017). For liquid cultures, 518 

sterilized seeds were dispensed in 190 ml containers (Greiner) with 30 ml liquid ½MS-10 medium (half-strength 519 

Murashige and Skoog salts (Murashige and Skoog, 1962) with 1x MS vitamins, pH 5.8, and 1% sucrose (w/v)). 520 

The liquid cultures were stratified at 4 °C in the dark for up to 48 h before transfer to a rotary shaker (60 rpm) 521 

at 25 °C (16 h light/8 h dark cycle) for the indicated time. For solid medium cultures, sterilized seeds were 522 

cultured at 21 °C (16 h light/8 h dark cycle) on ½MS-10 medium with 0.8% (w/v) agar.  523 

Chemical treatments 524 

Dexamethasone (DEX) (Sigma) was dissolved in 70% ethanol and used at a final concentration of 10 µM in 525 

all experiments. Yucasin (Nishimura et al., 2014) (Sigma), yucasin difluorinated analog (YDF) (Tsugafune et al., 526 

2017) (provided by Hayashi lab) and kynurenine (Sigma) were all dissolved in DMSO and were added to the 527 

solid and liquid culture medium as described in the text. Mock-treated samples contained the same volume of 528 

ethanol or DMSO. The liquid medium and chemicals were refreshed every six to seven days. Analysis of somatic 529 

embryogenesis phenotypes was performed with more than three replicates with more than 100 explants per 530 

treatment. The phenotypes shown were observed in 100% of the explants. 531 

CRISPR-Cas9 mutagenesis  532 

To avoid BBM silencing upon outcrossing (Horstman et al., 2017b), yuc3 yuc8 double mutants were 533 

generated by CRISPR-Cas9 mutagenesis directly in the 35S:BBM-GR background rather than by crossing with T-534 

DNA mutants. CRISPR-Cas9 mutagenesis of YUC3 and YUC8 was performed using the U6-26 promoter for the 535 

single guide RNAs (sgRNAs), an RPS5A promoter-driven Arabidopsis codon-optimized Cas9 gene (Fauser et al., 536 

2014), and FAST-Red selection (Castel et al., 2019), all in vector pICSL4723 (Weber et al., 2011; Wang et al., 537 

2019). Two sgRNAs targeting YUC3 and two sgRNAs targeting YUC8 were assembled into one vector to obtain 538 
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yuc3CR yuc8CR double mutant lines. The sgRNAs and mutant genotyping primers are listed in Supplemental 539 

Table S2. The CRISPR-Cas9 vectors were transformed to a highly embryogenic 35S:BBM-GR line. Two double 540 

yuc3 yuc8 mutant lines, each with the same yuc3 mutation and a different yuc8 mutation were obtained 541 

(Supplemental Figure S3). Homozygous T4 CAS9-free yuc3 and yuc8 mutants were used for the analysis. 542 

Analysis of somatic embryogenesis efficiency was performed with at least two technical replicates with more 543 

than 99 explants per mutant line.  544 

Transformation 545 

All constructs were transformed using the floral dip method (Clough and Bent, 1998). Transgenic T1 seeds 546 

from CRISPR transformants were selected based on FAST-Red expression (Castel et al., 2019). Transgenic T1 547 

seedlings with reporter lines were selected as described above. Homozygous mutant lines were used in all 548 

analyses.  549 

Quantitative real-time RT- PCR 550 

RNA was isolated using the InviTrap Spin plant RNA mini kit (Invitek Molecular, # 1064100300) with the 551 

addition of 25 µl Plant RNA isolation Aid (Ambion), followed by a DNAse treatment (TURBO DNA-free kit, 552 

Invitrogen). cDNA was synthesized using the iScript cDNA synthesis kit (Bio-Rad) following the manufacturer’s 553 

instructions. Quantitative real-time RT-PCR (RT-qPCR) was performed using a BioRad MyiQ PCR machine with 554 

the SYBR green mix as described in Horstman et al. (2015). Relative gene expression was calculated with the 555 

2−ΔΔCT method (Livak and Schmittgen, 2001) using the non-DEX treated (mock) samples as calibrators and the 556 

SAND gene (Czechowski et al., 2005) as the reference. Three biological replicates comprising germinating 557 

seeds/seedlings were used for each treatment. Statistically significant changes in gene expression levels were 558 

determined using Student’s t-test p<0.05. The qPCR DNA primers are shown in Supplemental Table S3. 559 

Histology 560 

Fresh material for sectioning was fixed overnight at 4°C in 3:1 absolute ethanol:glacial acetic acid and then 561 

dehydrated stepwise from 70 to 100% ethanol. The fixed material was infiltrated in Steedman’s wax and then 562 

sectioned and stained with 0.05% Toluidine Blue (w/v) as previously described (Wrobel et al., 2011). Images 563 

were taken with a Nikon Eclipse Ni microscope with a Nikon DS-Fi1 camera and NIS Elements L software 564 

(Nikon). Nine to 12 explants per treatment were observed. 565 

Microscopy 566 

Confocal laser scanning microscopy was performed as previously described (Soriano et al., 2014; Horstman 567 

et al., 2017b). Samples were fixed with 4% (w/v) para-formaldehyde, counterstained with 0.1% (v/v) SCRI 568 

Renaissance 2200 (SR2200; Musielak et al., 2016) and then stored at 4 °C for up to two weeks before imaging. 569 

Fluorescence was observed using a Leica SPE DM5500 confocal microscope using the LAS AF software. SR2200 570 

was exited with the 405-nm laser line and fluorescence emission detected between 415 and 476 nm. GFP was 571 

excited with the 488-nm laser line and light emission detected between 505 and 540 nm. YFP was excited with 572 

the 488-nm laser line and detected between 517 and 597 nm. tdTomato was excited with the 561-nm laser line 573 

and light emission detected between 571 and 630 nm. Brightness/contrast adjustment was done in the LAS AF 574 

software and image cropping was done in ImageJ. Nine to 20 explants were analyzed for each treatment. The 575 

images represent the majority of the examined explants or as noted in Supplemental Table S1. 576 
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β-glucuronidase (GUS) assays were performed for up to 22 hours at 37 °C, as previously described (Sieburth 577 

and Meyerowitz, 1997) using 2.5 mM potassium ferri- and ferrocyanide. GUS-stained tissues were cleared in 578 

HCG (water:chloral hydrate:glycerol, 25:55.7:8.3; w/w) and then observed using a Nikon Optiphot microscope 579 

with differential interference contrast optics. Images were recorded with a Nikon DS-Fi1 camera and processed 580 

using NIS-Elements D 3.2 software and ImageJ. Light microscopy was performed using a ZEISS Stemi SV 11 581 

microscope. The GUS assay was repeated two times with at least 40 explants examined for each timepoint. The 582 

images represent the majority of the examined explants. 583 

IAA measurements 584 

Seeds from WT Col-0 and two independent 35S:BBM-GR lines (two replicates per line) were grown for 24 585 

hours in liquid ½MS-10 medium and then grown for an additional three days in the presence or absence of 10 586 

µM DEX. IAA extraction and measurements were performed as in Ruyter-Spira et al. (2011) using ca. 100-250 587 

mg fresh weight per sample.  588 

Accession numbers 589 

The previously published ChIP-seq data and data analysis (Horstman et al., 2015) can be downloaded from 590 

the Gene Expression Omnibus (GSE52400). 591 
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Figures 622 

623 

Figure 1. Overview of BABY BOOM (BBM)-induced somatic embryogenesis. A-E, Light micrographs of 624 

representative dexamethasone (DEX)-treated 35S:BBM-GR explants. F-J, Confocal laser scanning micrographs 625 

of WOX2:YFP expression at the cotyledon tip of DEX-treated 35S:BBM-GR explants. The day of culture is 626 

indicated above the images. Arrowheads, WOX2-YFP expression. Arrows, growth protrusions. Asterisks, 627 

autofluorescence. ad, adaxial side. ab, abaxial side. SE, somatic embryo. Scale bars: A-E, 1 mm; F-J, 100 µm. 628 

629 

Figure 2. BABY BOOM (BBM) binds and regulates the expression of auxin biosynthesis genes. A-C, Chromatin 630 

Immunoprecipitation Sequencing (ChIP-seq) BBM binding profiles for auxin biosynthesis genes in somatic 631 

embryo tissue. The binding profiles for 35S::BBM-GFP (upper profile) and BBM::BBM-YFP (lower profile) are 632 

shown. The x-axis shows the nucleotide position of DNA binding in the selected genes (TAIR 10 annotation), the 633 

y-axis shows the ChIP-seq score, and the arrowheads indicate the direction of gene transcription. Peaks with634 

scores above 1.76 for 35S::BBM-GFP and 3.96 for pBBM::BBM-YFP were considered statistically significant (*, 635 

false discovery rate (FDR)<0.05). The ChIP-seq data was generated in Horstman et al., (2015). The ChIP-seq data 636 

and data analysis can be downloaded from GEO (Gene expression Omnibus; GSE52400). The plots were 637 

generated using Integrated Genome Browser. D, The relative expression of auxin biosynthesis genes during 638 

seed germination was determined by qPCR for dexamethasone (DEX)-treated 35S::BBM-GR seedlings using 639 

mock-treated Col-0 seeds as the calibrator and the SAND gene (Czechowski et al., 2005) as the reference. Error 640 

bars indicate standard errors of the three biological replicates in the same genetic background. Asterisk, 641 

statistically significant change in gene expression levels, determined using Student’s t-test (p<0.05). 642 

643 

Figure 3. BABY BOOM (BBM) overexpression induces ectopic expression of YUCCA3 (YUC3) and YUC8. Images of 644 

roots, hypocotyls and cotyledons from YUC reporter lines in a 35S:BBM-GR background with (solid grey line) or 645 

without (dashed grey line) dexamethasone (DEX) treatment. The day of culture is shown above the images. A-J, 646 

Confocal light scanning micrographs of YUC3:erGFP expression. K-T, Light micrographs of YUC8:GUS expression. 647 

Scale bars, 100 μm. 648 

649 

Figure 4. BABY BOOM (BBM) expression enhances DR5 auxin response and IAA biosynthesis. Confocal laser 650 

scanning micrographs of cotyledons or roots from 35S:BBM-GR DR5 seedlings grown without (A-C) and 651 

with (D-J) dexamethasone (DEX). D-F, H and I are images of DR5v2:ntdTomato cotyledons or roots. G and J 652 

are images of DR5:GFP cotyledons. The images in G and J are counterstained with FM4-64. K, Light image of 653 

DR5:GUS expression in the cotyledon of a DEX-treated 35S:BBM-GR seedling. Samples were counter stained 654 

with SR2200 (grey, A-F, H and I) or outlined using red autofluorescence (G and J). The dashed ellipses in H, I and 655 

K indicate the DR5 minimum. Small embryogenic protrusions are indicated with arrowheads in I and J. ab, 656 

abaxial; ad, adaxial; va, vascular tissue; asterisks autofluorescence. Scale bars, 200 μm. L, IAA(indole acetic acid) 657 

and oxIAA (oxindole-3-acetic acid) concentrations in seedlings of wild-type (WT) Col-0 and two 35S:BBM-GR 658 

lines grown in the absence or presence of DEX (three technical replicates, each 200mg). *, samples that showed 659 
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statistically significant differences in IAA or oxIAA concentrations compared to the non-DEX treated 35S:BBM-660 

GR control (Student’s t-test, p<0.05). Error bars represent the standard deviation of the replicates. 661 

662 

Figure 5. YUCCA (YUC)-dependent auxin biosynthesis is required for efficient BABY BOOM (BBM)-induced 663 

somatic embryogenesis. Regeneration phenotypes of 14-day-old explants from the indicated lines. The explants 664 

were categorized in three groups: explants with somatic embryos, explants with ectopic shoots and explants 665 

without any ectopic structures. Representative images are shown on the right. All seedlings were treated 666 

continuously with 10 μM dexamethasone (DEX). Statistically significant differences in each category between 667 

the mutant lines and the 35S:BBM-GR control line were determined using Student’s t-test (p<0.05) and 668 

indicated with asterisks. Error bars represent standard deviation of at least two biological replicates (n>227).  669 

670 

Figure 6. Auxin biosynthesis is required for BABY BOOM (BBM)-mediated somatic embryogenesis. 35S:BBM-GR 671 

seeds were grown for 14 days in the presence of dexamethasone (DEX) and imaged at the indicated time 672 

points. The YUCCA enzyme inhibitor yucasin (100 µM) was added or removed during the culture period as 673 

indicated (day +y or day -y). A-E, DEX-treated samples to which YUC inhibitor was added on day 0, 2, 4, 6, 8 or 674 

10. F, DEX treated control sample. G-J. DEX-treated samples in which YUC inhibitor was added on day 0 and675 

then removed on day 4, 6, 8 or 10. Scale bars, 1 mm. 676 

677 

Figure 7. YUCCA (YUC)-dependent auxin biosynthesis is required for the formation of histodifferentiated 678 

somatic embryos. Light micrographs of thin cross sections of the cotyledons of dexamethasone (DEX) and YUC 679 

inhibitor (yucasin)-treated 35S:BBM-GR explants fixed on the days indicated above the images. The day of 680 

culture and the yucasin treatment (100 µM) is shown above and in the image panels, respectively. A and B, 681 

Explants from control samples treated with DEX from day 0 until the end of the culture on day 14. Panel B is a 682 

composite of different images from the same section. C-F, Explants from samples treated with DEX from day 0 683 

to day 14, to which YUC enzyme inhibitor was added on day 0 (D, E), day 4 (C), or day 7 (F). black arrowhead, 684 

growth protrusions (A, C, D and E) and somatic embryos (B and F);ad, adaxial side; ab, abaxial side; cot, 685 

cotyledon; cotse, cotyledons of somatic embryos; v, vascular (A and D); pv, provascular tissue (B and F); dotted 686 

line, proliferating cotyledon tip. Scale bars, 200 μm.  687 

688 

Figure 8. Auxin biosynthesis is required to maintain BABY BOOM (BBM)-induced totipotency. Confocal laser 689 

scanning micrographs of cotyledon/cotyledon tips of 35S:BBM-GR explants grown with dexamethasone (DEX), 690 

with or without the YUCCA enzyme inhibitor YDF (yucasin difluorinated analog DF; 100 µM). A, Control DEX-691 

treated explants. B, C and D, Explants treated with DEX and YDF, which was added or removed on the days 692 

indicated by grey blocks in each row. Samples were counter stained with SR2200 (magenta). The day of culture 693 

is indicated in the panels. Yellow arrowheads, WOX2 expression (yellow signal). Asterisks, autofluorescence. ab, 694 

abaxial side; ad, adaxial side. Scale bars, 100 μm.  695 

696 
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