11 research outputs found

    Circulating tumor cells: approaches to isolation and characterization

    Get PDF
    Circulating tumor cells (CTCs) shed from primary and metastatic cancers are admixed with blood components and are thus rare, making their isolation and characterization a major technological challenge. CTCs hold the key to understanding the biology of metastasis and provide a biomarker to noninvasively measure the evolution of tumor genotypes during treatment and disease progression. Improvements in technologies to yield purer CTC populations amenable to better cellular and molecular characterization will enable a broad range of clinical applications, including early detection of disease and the discovery of biomarkers to predict treatment responses and disease progression

    Clinical relevance and biology of circulating tumor cells

    Get PDF
    Most breast cancer patients die due to metastases, and the early onset of this multistep process is usually missed by current tumor staging modalities. Therefore, ultrasensitive techniques have been developed to enable the enrichment, detection, isolation and characterization of disseminated tumor cells in bone marrow and circulating tumor cells in the peripheral blood of cancer patients. There is increasing evidence that the presence of these cells is associated with an unfavorable prognosis related to metastatic progression in the bone and other organs. This review focuses on investigations regarding the biology and clinical relevance of circulating tumor cells in breast cancer

    A rare-cell detector for cancer

    No full text
    Although a reliable method for detection of cancer cells in blood would be an important tool for diagnosis and monitoring of solid tumors in early stages, current technologies cannot reliably detect the extremely low concentrations of these rare cells. The preferred method of detection, automated digital microscopy (ADM), is too slow to scan the large substrate areas. Here we report an approach that uses fiber-optic array scanning technology (FAST), which applies laser-printing techniques to the rare-cell detection problem. With FAST cytometry, laser-printing optics are used to excite 300,000 cells per sec, and emission is collected in an extremely wide field of view, enabling a 500-fold speed-up over ADM with comparable sensitivity and superior specificity. The combination of FAST enrichment and ADM imaging has the performance required for reliable detection of early-stage cancer in blood

    Non-Hodgkin’s Lymphomas, Version 4.2014

    No full text
    Non-Hodgkin's lymphomas (NHL) are a heterogeneous group of lymphoproliferative disorders originating in B lymphocytes, T lymphocytes, or natural killer cells. Mantle cell lymphoma (MCL) accounts for approximately 6% of all newly diagnosed NHL cases. Radiation therapy with or without systemic therapy is a reasonable approach for the few patients who present with early-stage disease. Rituximab-based chemoimmunotherapy followed by high-dose therapy and autologous stem cell rescue (HDT/ASCR) is recommended for patients presenting with advanced-stage disease. Induction therapy followed by rituximab maintenance may provide extended disease control for those who are not candidates for HDT/ASCR. Ibrutinib, a Bruton tyrosine kinase inhibitor, was recently approved for the treatment of relapsed or refractory disease. This manuscript discusses the recommendations outlined in the NCCN Guidelines for NHL regarding the diagnosis and management of patients with MCL

    Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma, Version 1.2015

    No full text
    Chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL) are different manifestations of the same disease, which are managed in the same way. The advent of novel monoclonal antibodies (ofatumumab and obinutuzumab) led to the development of effective chemoimmunotherapy regimens. The recently approved small molecule kinase inhibitors (ibrutinib and idelalisib) are effective treatment options for CLL in elderly patients with decreased tolerance for aggressive regimens and in patients with poor prognostic features who do not benefit from conventional chemoimmunotherapy regimens. This portion of the NCCN Guidelines for Non-Hodgkin's Lymphomas describes the recent specific to the incorporation of recently approved targeted therapies for the management of patients with newly diagnosed and relapsed or refractory CLL/SLL

    Prostate-specific markers to identify rare prostate cancer cells in liquid biopsies

    No full text
    Despite improvements in early detection and advances in treatment, patients with prostate cancer continue to die from their disease. Minimal residual disease after primary definitive treatment can lead to relapse and distant metastases, and increasing evidence suggests that circulating tumour cells (CTCs) and bone marrow-derived disseminated tumour cells (BM-DTCs) can offer clinically relevant biological insights into prostate cancer dissemination and metastasis. Using epithelial markers to accurately detect CTCs and BM-DTCs is associated with difficulties, and prostate-specific markers are needed for the detection of these cells using rare cell assays. Putative prostate-specific markers have been identified, and an optimized strategy for staining rare cancer cells from liquid biopsies using these markers is required. The ideal prostate-specific marker will be expressed on every CTC or BM-DTC throughout disease progression (giving high sensitivity) and will not be expressed on non-prostate-cancer cells in the sample (giving high specificity). Some markers might not be specific enough to the prostate to be used as individual markers of prostate cancer cells, whereas others could be truly prostate-specific and would make ideal markers for use in rare cell assays. The goal of future studies is to use sensitive and specific prostate markers to consistently and reliably identify rare cancer cells
    corecore