102 research outputs found

    Growing Up Biracial in a Southern Elementary School

    Get PDF
    This dissertation explored the relationship between racial identity of biracial children (defined as fifty percent Black and fifty percent White) and their academic experiences in a southern elementary school setting. This dissertation ventured further to explore the curriculum in a southern elementary school setting and whether it meets the academic needs of the biracial child and includes the biracial child. This dissertation reflected on artifacts collected and analyzed narratives from the participants involved. These participants included six biracial female students in grades three through five. The current research employed Critical Race Theory as its theoretical framework. Critical Race Theory is an analytical framework which focuses on inequalities related to race, class, and gender. It was firmly based in the field of Curriculum Studies. The researcher provided a history of the south, multiculturalism, and whiteness in the United States. The researcher also included past and current curriculum researchers and the results of their studies as compared to the present research. Included in this dissertation are reviews of the current research including qualitative data through student drawings and interviews of students as well as parents, teachers, and administrators. It also included quantitative data through the analysis of CRCT scores and administrative records. The conclusions of the current research were 1) there is a relationship between racial identity and academic experiences and 2) the biracial child was not included in the textbook, however, the biracial child\u27s academic needs were met for purposes of standardized test scores. One hundred percent of the biracial students felt they had a positive educational experience in this southern elementary school. However, the researcher found this not to be accurate after further review of all the data. The parents felt their biracial children were welcomed at this school and while suffering some racial prejudices such as picking, they felt it was no more than the average elementary child. The teachers acknowledged the lack of information for the biracial child in their textbooks and searched to find information for the biracial child through videos, classroom libraries, and media centers. The researcher notes that while these teachers did attempt to fill the gaps left in the curriculum, it was at a minimal level and much more needs to be done. The teachers in this school system do maintain they incorporate race in the units they are teaching as well as how race relates to all individuals involved in the past and the present. They search out the previous avenues for all children. However, in the case of the biracial child and all children, this must be done on a daily basis and not just when a chapter calls for the discussion

    Significance of MDR1 and multiple drug resistance in refractory human epileptic brain

    Get PDF
    BACKGROUND: The multiple drug resistance protein (MDR1/P-glycoprotein) is overexpressed in glia and blood-brain barrier (BBB) endothelium in drug refractory human epileptic tissue. Since various antiepileptic drugs (AEDs) can act as substrates for MDR1, the enhanced expression/function of this protein may increase their active extrusion from the brain, resulting in decreased responsiveness to AEDs. METHODS: Human drug resistant epileptic brain tissues were collected after surgical resection. Astrocyte cell cultures were established from these tissues, and commercially available normal human astrocytes were used as controls. Uptake of fluorescent doxorubicin and radioactive-labeled Phenytoin was measured in the two cell populations, and the effect of MDR1 blockers was evaluated. Frozen human epileptic brain tissue slices were double immunostained to locate MDR1 in neurons and glia. Other slices were exposed to toxic concentrations of Phenytoin to study cell viability in the presence or absence of a specific MDR1 blocker. RESULTS: MDR1 was overexpressed in blood vessels, astrocytes and neurons in human epileptic drug-resistant brain. In addition, MDR1-mediated cellular drug extrusion was increased in human 'epileptic' astrocytes compared to 'normal' ones. Concomitantly, cell viability in the presence of cytotoxic compounds was increased. CONCLUSIONS: Overexpression of MDR1 in different cell types in drug-resistant epileptic human brain leads to functional alterations, not all of which are linked to drug pharmacokinetics. In particular, the modulation of glioneuronal MDR1 function in epileptic brain in the presence of toxic concentrations of xenobiotics may constitute a novel cytoprotective mechanism

    Comparative gene expression of gonadotropins (FSH and LH) and peptide levels of gonadotropin-releasing hormones (GnRHs) in the pituitary of wild and cultured Senegalese sole (Solea senegalensis) broodstocks

    Get PDF
    12 páginas, 8 figuras, 2 tablas.The Senegalese sole (Solea senegalensis) is a valuable flatfish for aquaculture, but it presents important reproductive problems in captivity. Spawning is achieved by wild-caught breeders but cultured broodstocks fail to spawn spontaneously and, when they do, eggs are unfertilized. To gain knowledge on the physiological basis underlying this reproductive dysfunction, this study aimed at analyzing comparative hormone levels between wild and cultured broodstocks at the spawning season. The Senegalese sole gonadotropin (GTH) subunits, FSHβ, LHβ and GPα, were cloned and qualitative (in situ hybridization) and quantitative (real-time PCR) assays developed to analyze pituitary GTH gene expression. In females, FSHβ and GPα mRNA levels were higher in wild than in cultured broodstocks, whereas in males all three subunits were highest in cultured. By ELISA, three GnRH forms were detected in the pituitary, displaying a relative abundance of GnRH2 > GnRH1 > GnRH3. All GnRHs were slightly more abundant in wild than cultured females, whereas no differences were observed in males. Plasma levels of vitellogenin and sex steroids were also analyzed. Results showed endocrine differences between wild and cultured broodstocks at the spawning period, which could be related to the endocrine failure of the reproductive axis in cultured breeders.This research was funded by the Spanish Ministry of Education and Science (MEC) (AGL2006-13777-C01), the Ministry of Agriculture, Fisheries and Food (MAPA) (JACUMAR, II National Plan for the Cultivation of Sole) and the Regional Government of Galicia (PGIDIT06RMA004E). J.M. Guzmán received a FPI fellowship from the MEC. J.B. Ortiz-Delgado was supported by the “Ramón y Cajal” program (MEC, Spain).Peer reviewe

    Seismic air gun exposure during early-stage embryonic development does not negatively affect spiny lobster Jasus edwardsii larvae (Decapoda:Palinuridae)

    Get PDF
    Marine seismic surveys are used to explore for sub-seafloor oil and gas deposits. These surveys are conducted using air guns, which release compressed air to create intense sound impulses, which are repeated around every 8-12 seconds and can travel large distances in the water column. Considering the ubiquitous worldwide distribution of seismic surveys, the potential impact of exposure on marine invertebrates is poorly understood. In this study, egg-bearing female spiny lobsters (Jasus edwardsii) were exposed to signals from three air gun configurations, all of which exceeded sound exposure levels (SEL) of 185 dB re 1 µPa2·s. Lobsters were maintained until their eggs hatched and the larvae were then counted for fecundity, assessed for abnormal morphology using measurements of larval length and width, tested for larval competency using an established activity test and measured for energy content. Overall there were no differences in the quantity or quality of hatched larvae, indicating that the condition and development of spiny lobster embryos were not adversely affected by air gun exposure. These results suggest that embryonic spiny lobster are resilient to air gun signals and highlight the caution necessary in extrapolating results from the laboratory to real world scenarios or across life history stages

    Lateralization in the Invertebrate Brain: Left-Right Asymmetry of Olfaction in Bumble Bee, Bombus terrestris

    Get PDF
    Brain and behavioural lateralization at the population level has been recently hypothesized to have evolved under social selective pressures as a strategy to optimize coordination among asymmetrical individuals. Evidence for this hypothesis have been collected in Hymenoptera: eusocial honey bees showed olfactory lateralization at the population level, whereas solitary mason bees only showed individual-level olfactory lateralization. Here we investigated lateralization of odour detection and learning in the bumble bee, Bombus terrestris L., an annual eusocial species of Hymenoptera. By training bumble bees on the proboscis extension reflex paradigm with only one antenna in use, we provided the very first evidence of asymmetrical performance favouring the right antenna in responding to learned odours in this species. Electroantennographic responses did not reveal significant antennal asymmetries in odour detection, whereas morphological counting of olfactory sensilla showed a predominance in the number of olfactory sensilla trichodea type A in the right antenna. The occurrence of a population level asymmetry in olfactory learning of bumble bee provides new information on the relationship between social behaviour and the evolution of population-level asymmetries in animals

    Environmental noise reduces predation rate in an aquatic invertebrate

    Get PDF
    Noise is one of a wide range of disturbances associated with human activities that have been shown to have detrimental impacts on a wide range of species, from montane regions to the deep marine environment. Noise may also have community-level impacts via predator–prey interactions, thus jeopardising the stability of trophic networks. However, the impact of noise on freshwater ecosystems is largely unknown. Even more so is the case of insects, despite their crucial role in trophic networks. Here, we study the impact of underwater noise on the predatory functional response of damselfly larvae. We compared the feeding rates of larvae under anthropogenic noise, natural noise, and silent conditions. Our results suggest that underwater noise (pooling the effects of anthropogenic noise and natural noise) decreases the feeding rate of damselflies significantly compared to relatively silent conditions. In particular, natural noise increased the handling time significantly compared to the silent treatment, thus reducing the feeding rate. Unexpectedly, feeding rates under anthropogenic noise were not reduced significantly compared to silent conditions. This study suggests that noise per se may not necessarily have negative impacts on trophic interactions. Instead, the impact of noise on feeding rates may be explained by the presence of nonlinearities in acoustic signals, which may be more abundant in natural compared to anthropogenic noise. We conclude by highlighting the importance of studying a diversity of types of acoustic pollution, and encourage further work regarding trophic interactions with insects using a functional response approach

    Timing matters: traffic noise accelerates telomere loss rate differently across developmental stages

    Get PDF
    Background Noise pollution is one of the leading environmental health risks for humans, linked to a myriad of stress-related health problems. Yet little is known about the long-term effects of noise on the health and fitness of wildlife. We experimentally investigated the direct and cross-generational effects of traffic noise on telomeres; a measure of cellular ageing that is predictive of disease and longevity in humans and other organisms. We exposed zebra finches (Taenopygia guttata) to three different treatment groups: 1) parents were exposed to traffic noise before and during breeding, together with their nestling young, 2) fledged juveniles but not their parents were exposed to traffic noise, and 3) control group birds were never exposed to traffic noise. Results Although there was no significant effect of traffic noise exposure at early (pre-fledging) stages of offspring telomere length or loss rate, traffic noise exposure accelerated telomere loss in older (post-fledging) juveniles. Conclusions The age-dependent differences found in this study in telomere loss could occur if parents buffer younger offspring against the detrimental effects of noise exposure and/or if younger offspring are less sensitive to noise exposure. Telomere length during early life has been shown to be positively related to lifespan and the observed noise-induced increase of telomere attrition rate could reduce the fitness of the affected birds and potentially alter the population dynamics of birds in noise polluted areas. Our data highlight the need to consider the developmental stage of an organism to better understand the ecological consequences of anthropogenic change
    • …
    corecore