300 research outputs found

    Novel Marine Compounds: Anticancer or Genotoxic?

    Get PDF
    In the past several decades, marine organisms have generously gifted to the pharmaceutical industries numerous naturally bioactive compounds with antiviral, antibacterial, antimalarial, anti-inflammatory, antioxidant, and anticancer potentials. But till date only few anticancer drugs (cytarabine, vidarabine) have been commercially developed from marine compounds while several others are currently in different clinical trials. Majority of these compounds were tested in the tumor xenograft models, however, lack of anticancer potential data in the chemical- and/or oncogene-induced pre-initiation animal carcinogenesis models might have cost some of the marine anticancer compounds an early exit from the clinical trials. This review critically discusses importance of preclinical evaluation, failure of human clinical trials with certain potential anticancer agents, the screening tests used, and choice of biomarkers

    The role of Schizosaccharomyces pombe SUMO ligases in genome stability

    Get PDF
    SUMOylation is a post-translational modification that affects a large number of proteins, many of which are nuclear. While the role of SUMOylation is beginning to be elucidated, it is clear that understanding the mechanisms that regulate the process is likely to be important. Control of the levels of SUMOylation is brought about through a balance of conjugating and deconjugating activities, i.e. of SUMO (small ubiquitin-related modifier) conjugators and ligases versus SUMO proteases. Although conjugation of SUMO to proteins can occur in the absence of a SUMO ligase, it is apparent that SUMO ligases facilitate the SUMOylation of specific subsets of proteins. Two SUMO ligases in Schizosaccharomyces pombe, Pli1 and Nse2, have been identified, both of which have roles in genome stability. We report here on a comparison between the properties of the two proteins and discuss potential roles for the proteins

    Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke

    Get PDF
    Brain-computer interfaces (BCI) are used in stroke rehabilitation to translate brain signals into intended movements of the paralyzed limb. However, the efficacy and mechanisms of BCI-based therapies remain unclear. Here we show that BCI coupled to functional electrical stimulation (FES) elicits significant, clinically relevant, and lasting motor recovery in chronic stroke survivors more effectively than sham FES. Such recovery is associated to quantitative signatures of functional neuroplasticity. BCI patients exhibit a significant functional recovery after the intervention, which remains 6–12 months after the end of therapy. Electroencephalography analysis pinpoints significant differences in favor of the BCI group, mainly consisting in an increase in functional connectivity between motor areas in the affected hemisphere. This increase is significantly correlated with functional improvement. Results illustrate how a BCI–FES therapy can drive significant functional recovery and purposeful plasticity thanks to contingent activation of body natural efferent and afferent pathways

    Driving a BCI Wheelchair: A Patient Case Study

    Get PDF
    Our brain-actuated wheelchair uses shared control to couple the user input with the contextual information about the surroundings in order to perform natural manoeuvres both safely and efficiently. In this study, we investigate the feasibility of using our brain–controlled wheelchair with patients in a rehabilitation clinic. Both user and system performance metrics are analysed. We find that the driving performance of a motor-disabled patient at the clinic is comparable with the performance of four healthy subjects. All five participants were able to complete the driving task successfully

    SUMO chain formation is required for response to replication arrest in S. pombe

    Get PDF
    SUMO is a ubiquitin-like protein that is post-translationally attached to one or more lysine residues on target proteins. Despite having only 18% sequence identity with ubiquitin, SUMO contains the conserved betabetaalphabetabetaalphabeta fold present in ubiquitin. However, SUMO differs from ubiquitin in having an extended N-terminus. In S. pombe the N-terminus of SUMO/Pmt3 is significantly longer than those of SUMO in S. cerevisiae, human and Drosophila. Here we investigate the role of this N-terminal region. We have used two dimensional gel electrophoresis to demonstrate that S. pombe SUMO/Pmt3 is phosphorylated, and that this occurs on serine residues at the extreme N-terminus of the protein. Mutation of these residues (in pmt3-1) results in a dramatic reduction in both the levels of high Mr SUMO-containing species and of total SUMO/Pmt3, indicating that phosphorylation of SUMO/Pmt3 is required for its stability. Despite the significant reduction in high Mr SUMO-containing species, pmt3-1 cells do not display an aberrant cell morphology or sensitivity to genotoxins or stress. Additionally, we demonstrate that two lysine residues in the N-terminus of S. pombe SUMO/Pmt3 (K14 and K30) can act as acceptor sites for SUMO chain formation in vitro. Inability to form SUMO chains results in aberrant cell and nuclear morphologies, including stretched and fragmented chromatin. SUMO chain mutants are sensitive to the DNA synthesis inhibitor, hydroxyurea (HU), but not to other genotoxins, such as UV, MMS or CPT. This implies a role for SUMO chains in the response to replication arrest in S. pomb

    3-Formylchromones as diverse building blocks in heterocycles synthesis

    Get PDF
    This review covers the chemical reactivity of 3-formylchromones towards condensation reactions with a variety of carbon and nitrogen nucleophiles. Some chromone derivatives linked a variety of heterocyclic systems were prepared from the direct condensation of 3-formylchromones with heterocyclic compounds containing active methylene groups. A diverse number of fused heterocyclic systems were prepared from the reaction of 3-formylchromones with some bifunctional nucleophiles, these reactions mainly proceed via condensation with the aldehydic function followed by nucleophilic attack at C-2 position of the chromone moiety

    Bladder stones – red herring for resurgence of spasticity in a spinal cord injury patient with implantation of Medtronic Synchromed pump for intrathecal delivery of baclofen – a case report

    Get PDF
    BACKGROUND: Increased spasms in spinal cord injury (SCI) patients, whose spasticity was previously well controlled with intrathecal baclofen therapy, are due to (in order of frequency) drug tolerance, increased stimulus, low reservoir volume, catheter malfunction, disease progression, human error, and pump mechanical failure. We present a SCI patient, in whom bladder calculi acted as red herring for increased spasticity whereas the real cause was spontaneous extrusion of catheter from intrathecal space. CASE PRESENTATION: A 44-year-old male sustained a fracture of C5/6 and incomplete tetraplegia at C-8 level. Medtronic Synchromed pump for intrathecal baclofen therapy was implanted 13 months later to control severe spasticity. The tip of catheter was placed at T-10 level. The initial dose of baclofen was 300 micrograms/day of baclofen, administered by a simple continuous infusion. During a nine-month period, he required increasing doses of baclofen (875 micrograms/day) to control spasticity. X-ray of abdomen showed multiple radio opaque shadows in the region of urinary bladder. No malfunction of the pump was detected. Therefore, increased spasticity was attributed to bladder stones. Electrohydraulic lithotripsy of bladder stones was carried out successfully. Even after removal of bladder stones, this patient required further increases in the dose of intrathecal baclofen (950, 1050, 1200 and then 1300 micrograms/day). Careful evaluation of pump-catheter system revealed that the catheter had extruded spontaneously and was lying in the paraspinal space at L-4, where the catheter had been anchored before it entered the subarachnoid space. A new catheter was passed into the subarachnoid space and the tip of catheter was located at T-8 level. The dose of intrathecal baclofen was decreased to 300 micrograms/day. CONCLUSION: Vesical calculi acted as red herring for resurgence of spasticity. The real cause for increased spasms was spontaneous extrusion of whole length of catheter from subarachnoid space. Repeated bending forwards and straightening of torso for pressure relief and during transfers from wheel chair probably contributed to spontaneous extrusion of catheter from spinal canal in this patient

    Importance of a C-Terminal Conserved Region of Chk1 for Checkpoint Function

    Get PDF
    BACKGROUND: The protein kinase Chk1 is an essential component of the DNA damage checkpoint pathway. Chk1 is phosphorylated and activated in the fission yeast Schizosaccharomyces pombe when cells are exposed to agents that damage DNA. Phosphorylation, kinase activation, and nuclear accumulation are events critical to the ability of Chk1 to induce a transient delay in cell cycle progression. The catalytic domain of Chk1 is well-conserved amongst all species, while there are only a few regions of homology within the C-terminus. A potential pseudosubstrate domain exists in the C-terminus of S. pombe Chk1, raising the possibility that the C-terminus acts to inhibit the catalytic domain through interaction of this domain with the substrate binding site. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate this hypothesis, we characterized mutations in the pseudosubstrate region. Mutation of a conserved aspartic acid at position 469 to alanine or glycine compromises Chk1 function when the mutants are integrated as single copies, demonstrating that this domain of Chk1 is critical for function. Our data does not support, however, the hypothesis that the domain acts to inhibit Chk1 function as other mutations in the amino acids predicted to comprise the pseudosubstrate do not result in constitutive activation of the protein. When expressed in multi-copy, Chk1D469A remains non-functional. In contrast, multi-copy Chk1D469G confers cell survival and imposes a checkpoint delay in response to some, though not all forms of DNA damage. CONCLUSIONS/SIGNIFICANCE: Thus, we conclude that this C-terminal region of Chk1 is important for checkpoint function and predict that a limiting factor capable of associating with Chk1D469G, but not Chk1D469A, interacts with Chk1 to elicit checkpoint activation in response to a subset of DNA lesions

    An essential role for dNTP homeostasis following CDK-induced replication stress

    Get PDF
    Replication stress is a common feature of cancer cells, and thus a potentially important therapeutic target. Here, we show that cyclindependent kinase (CDK)-induced replication stress, resulting from Wee1 inactivation, is synthetic lethal with mutations disrupting dNTP homeostasis in fission yeast. Wee1 inactivation leads to increased dNTP demand and replication stress through CDK-induced firing of dormant replication origins. Subsequent dNTP depletion leads to inefficient DNA replication, DNA damage and to genome instability. Cells respond to this replication stress by increasing dNTP supply through histone methyltransferase Set2-dependent MBF-induced expression of Cdc22, the catalytic subunit of ribonucleotide reductase (RNR). Disrupting dNTP synthesis following Wee1 inactivation, through abrogating Set2-dependent H3K36 trimethylation or DNA integrity checkpoint inactivation results in critically low dNTP levels, replication collapse and cell death, which can be rescued by increasing dNTP levels. These findings support a ‘dNTP supply and demand’ model in which maintaining dNTP homeostasis is essential to prevent replication catastrophe in response to CDK-induced replication stress

    Transferring BCI skills to successful application controls

    Get PDF
    The goal of our research is to enable various end-users to control applications by using a brain-computer interface (BCI). Since applications–like telepresence robots, wheelchairs or text entry systems–are quite demanding a good level of BCI control is needed. However, little is known on how much training is needed to achieve such a level. A second open issue is, if this can be done at rehabilitation clinics or user-centers, without BCI experts present? In this work we wanted to train BCI-naïve end-users within 10 days to successfully control such applications and present results of 23 severely motor-disabled participants
    corecore