54 research outputs found

    The effect of strict state measures on the epidemiologic curve of COVID-19 infection in the context of a developing country : a simulation from Jordan

    Get PDF
    COVID-19 has posed an unprecedented global public health threat and caused a significant number of severe cases that necessitated long hospitalization and overwhelmed health services in the most affected countries. In response, governments initiated a series of non-pharmaceutical interventions (NPIs) that led to severe economic and social impacts. The effect of these intervention measures on the spread of the COVID-19 pandemic are not well investigated within developing country settings. This study simulated the trajectories of the COVID-19 pandemic curve in Jordan between February and May and assessed the effect of Jordan’s strict NPI measures on the spread of COVID-19. A modified susceptible, exposed, infected, and recovered (SEIR) epidemic model was utilized. The compartments in the proposed model categorized the Jordanian population into six deterministic compartments: suspected, exposed, infectious pre-symptomatic, infectious with mild symptoms, infectious with moderate to severe symptoms, and recovered. The GLEAMviz client simulator was used to run the simulation model. Epidemic curves were plotted for estimated COVID-19 cases in the simulation model, and compared against the reported cases. The simulation model estimated the highest number of total daily new COVID-19 cases, in the pre-symptomatic compartmental state, to be 65 cases, with an epidemic curve growing to its peak in 49 days and terminating in a duration of 83 days, and a total simulated cumulative case count of 1048 cases. The curve representing the number of actual reported cases in Jordan showed a good pattern compatibility to that in the mild and moderate to severe compartmental states. The reproduction number under the NPIs was reduced from 5.6 to less than one. NPIs in Jordan seem to be effective in controlling the COVID-19 epidemic and reducing the reproduction rate. Early strict intervention measures showed evidence of containing and suppressing the disease

    Effectiveness of interactive teaching intervention on medical students' knowledge and attitudes toward stem cells, their therapeutic uses, and potential research applications

    Full text link
    Background: Stem cell science is rapidly developing with the potential to alleviate many non-treatable diseases. Medical students, as future physicians, should be equipped with the proper knowledge and attitude regarding this hopeful field. Interactive teaching, whereby the teachers actively involve the students in the learning process, is a promising approach to improve their interest, knowledge, and team spirit. This study aims to evaluate the effectiveness of an interactive teaching intervention on medical students' knowledge and attitudes about stem cell research and therapy. Methods: A pre-post test study design was employed. A six-session interactive teaching course was conducted for a duration of six weeks as an intervention. Pre- and post-intervention surveys were used. The differences in the mean scores of students' knowledge and attitudes were examined using paired t-test, while gender differences were examined using an independent t-test. Results: Out of 71 sixth-year medical students from different nationalities invited to participate in this study, the interactive teaching course was initiated by 58 students resulting in a participation rate of 81.7%. Out of 58 students, 48 (82.8%) completed the entire course. The mean age (standard deviation) of students was 24 (1.2) years, and 32 (66.7%) were males. The results showed poor knowledge about stem cells among the medical students in the pre-intervention phase. Total scores of stem cell-related knowledge and attitudes significantly improved post-intervention. Gender differences in knowledge and attitudes scores were not statistically significant post-intervention. Conclusions: Integrating stem cell science into medical curricula coupled with interactive learning approaches effectively increased students' knowledge about recent advances in stem cell research and therapy and improved attitudes toward stem cell research and applications. Keywords: Arab; Attitudes; Education; Interactive teaching; Jordan; Knowledge; Medical curriculum; Stem cells; Students

    CD20 and CD19 targeted vectors induce minimal activation of resting B lymphocytes

    Get PDF
    B lymphocytes are an important cell population of the immune system. However, until recently it was not possible to transduce resting B lymphocytes with retro- or lentiviral vectors, making them unsusceptible for genetic manipulations by these vectors. Lately, we demonstrated that lentiviral vectors pseudotyped with modified measles virus (MV) glycoproteins hemagglutinin, responsible for receptor recognition, and fusion protein were able to overcome this transduction block. They use either the natural MV receptors, CD46 and signaling lymphocyte activation molecule (SLAM), for cell entry (MV-LV) or the vector particles were further modified to selectively enter via the CD20 molecule, which is exclusively expressed on B lymphocytes (CD20-LV). It has been shown previously that transduction by MV-LV does not induce B lymphocyte activation. However, if this is also true for CD20-LV is still unknown. Here, we generated a vector specific for another B lymphocyte marker, CD19, and compared its ability to transduce resting B lymphocytes with CD20-LV. The vector (CD19ds-LV) was able to stably transduce unstimulated B lymphocytes, albeit with a reduced efficiency of about 10% compared to CD20-LV, which transduced about 30% of the cells. Since CD20 as well as CD19 are closely linked to the B lymphocyte activation pathway, we investigated if engagement of CD20 or CD19 molecules by the vector particles induces activating stimuli in resting B lymphocytes. Although, activation of B lymphocytes often involves calcium influx, we did not detect elevated calcium levels. However, the activation marker CD71 was substantially up-regulated upon CD20-LV transduction and most importantly, B lymphocytes transduced with CD20-LV or CD19ds-LV entered the G1b phase of cell cycle, whereas untransduced or MV-LV transduced B lymphocytes remained in G0. Hence, CD20 and CD19 targeting vectors induce activating stimuli in resting B lymphocytes, which most likely renders them susceptible for lentiviral vector transduction

    Lung function associated gene Integrator Complex subunit 12 regulates protein synthesis pathways

    Get PDF
    Background: Genetic studies of human lung function and Chronic Obstructive Pulmonary Disease have identified a highly significant and reproducible signal on 4q24. It remains unclear which of the two candidate genes within this locus may regulate lung function: GSTCD, a gene with unknown function, and/or INTS12, a member of the Integrator Complex which is currently thought to mediate 3'end processing of small nuclear RNAs.Results: We found that, in lung tissue, 4q24 polymorphisms associated with lung function correlate with INTS12 but not neighbouring GSTCD expression. In contrast to the previous reports in other species, we only observed a minor alteration of snRNA processing following INTS12 depletion. RNAseq analysis of knockdown cells instead revealed dysregulation of a core subset of genes relevant to airway biology and a robust downregulation of protein synthesis pathways. Consistent with this, protein translation was decreased in INTS12 knockdown cells. In addition, ChIPseq experiments demonstrated INTS12 binding throughout the genome, which was enriched in transcriptionally active regions. Finally, we defined the INTS12 regulome which includes genes belonging to the protein synthesis pathways.Conclusion: INTS12 has functions beyond the canonical snRNA processing. We show that it regulates translation by regulating the expression of genes belonging to protein synthesis pathways. This study provides a detailed analysis of INTS12 activities on a genome-wide scale and contributes to the biology behind the genetic association for lung function at 4q24.</p

    Antibodies against CD20 or B-Cell Receptor Induce Similar Transcription Patterns in Human Lymphoma Cell Lines

    Get PDF
    BACKGROUND: CD20 is a cell surface protein exclusively expressed on B cells. It is a clinically validated target for Non-Hodgkin's lymphomas (NHL) and autoimmune diseases. The B cell receptor (BCR) plays an important role for development and proliferation of pre-B and B cells. Physical interaction of CD20 with BCR and components of the BCR signaling cascade has been reported but the consequences are not fully understood. METHODOLOGY: In this study we employed antibodies against CD20 and against the BCR to trigger the respective signaling. These antibodies induced very similar expression patterns of up- and down-regulated genes in NHL cell lines indicating that CD20 may play a role in BCR signaling and vice versa. Two of the genes that were rapidly and transiently induced by both stimuli are CCL3 and CCL4. 4 hours after stimulation the concentration of these chemokines in culture medium reaches a maximum. Spleen tyrosine kinase Syk is a cytoplasmic tyrosine kinase and a key component of BCR signaling. Both siRNA mediated silencing of Syk and inhibition by selective small molecule inhibitors impaired CCL3/CCL4 protein induction after treatment with either anti-CD20 or anti-BCR antibodies. CONCLUSION: Our results suggest that treatment with anti-CD20 antibodies triggers at least partially a BCR activation-like response in NHL cell lines

    The Ser82 RAGE variant affects lung function and serum RAGE in smokers and sRAGE production in vitro

    Get PDF
    Introduction: Genome-Wide Association Studies have identified associations between lung function measures and Chronic Obstructive Pulmonary Disease (COPD) and chromosome region 6p21 containing the gene for the Advanced Glycation End Product Receptor (AGER, encoding RAGE). We aimed to (i) characterise RAGE expression in the lung, (ii) identify AGER transcripts, (iii) ascertain if SNP rs2070600 (Gly82Ser C/T) is associated with lung function and serum sRAGE levels and (iv) identify whether the Gly82Ser variant is functionally important in altering sRAGE levels in an airway epithelial cell model. Methods: Immunohistochemistry was used to identify RAGE protein expression in 26 human tissues and qPCR was used to quantify AGER mRNA in lung cells. Gene expression array data was used to identify AGER expression during lung development in 38 fetal lung samples. RNA-Seq was used to identify AGER transcripts in lung cells. sRAGE levels were assessed in cells and patient serum by ELISA. BEAS2B-R1 cells were transfected to overexpress RAGE protein with either the Gly82 or Ser82 variant and sRAGE levels identified. Results: Immunohistochemical assessment of 6 adult lung samples identified high RAGE expression in the alveoli of healthy adults and individuals with COPD. AGER/RAGE expression increased across developmental stages in human fetal lung at both the mRNA (38 samples) and protein levels (20 samples). Extensive AGER splicing was identified. The rs2070600T (Ser82) allele is associated with higher FEV1, FEV1/FVC and lower serum sRAGE levels in UK smokers. Using an airway epithelium model overexpressing the Gly82 or Ser82 variants we found that HMGB1 activation of the RAGE-Ser82 receptor results in lower sRAGE production. Conclusions: This study provides new information regarding the expression profile and potential role of RAGE in the human lung and shows a functional role of the Gly82Ser variant. These findings advance our understanding of the potential mechanisms underlying COPD particularly for carriers of this AGER polymorphism

    Sixteen new lung function signals identified through 1000 Genomes Project reference panel imputation

    Get PDF
    Lung function measures are used in the diagnosis of chronic obstructive pulmonary disease. In 38,199 European ancestry individuals, we studied genome-wide association of forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC with 1000 Genomes Project (phase 1)-imputed genotypes and followed up top associations in 54,550 Europeans. We identify 14 novel loci (P <5 x 10(-8)) in or near ENSA, RNU5F-1, KCNS3, AK097794, ASTN2, LHX3, CCDC91, TBX3, TRIP11, RIN3, TEKT5, LTBP4, MN1 and AP1S2, and two novel signals at known loci NPNT and GPR126, providing a basis for new understanding of the genetic determinants of these traits and pulmonary diseases in which they are altered.Peer reviewe

    Chemotherapie von Tumorerkrankungen

    No full text
    corecore