17 research outputs found

    New World Cactaceae Plants Harbor Diverse Geminiviruses

    Get PDF
    The family Cactaceae comprises a diverse group of typically succulent plants that are native to the American continent but have been introduced to nearly all other continents, predominantly for ornamental purposes. Despite their economic, cultural, and ecological importance, very little research has been conducted on the viral community that infects them. We previously identified a highly divergent geminivirus that is the first known to infect cacti. Recent research efforts in non-cultivated and asymptomatic plants have shown that the diversity of this viral family has been under-sampled. As a consequence, little is known about the effects and interactions of geminiviruses in many plants, such as cacti. With the objective to expand knowledge on the diversity of geminiviruses infecting cacti, we used previously acquired high-throughput sequencing results to search for viral sequences using BLASTx against a viral RefSeq protein database. We identified two additional sequences with similarity to geminiviruses, for which we designed abutting primers and recovered full-length genomes. From 42 cacti and five scale insects, we derived 42 complete genome sequences of a novel geminivirus species that we have tentatively named Opuntia virus 2 (OpV2) and 32 genomes of an Opuntia-infecting becurtovirus (which is a new strain of the spinach curly top Arizona virus species). Interspecies recombination analysis of the OpV2 group revealed several recombinant regions, in some cases spanning half of the genome. Phylogenetic analysis demonstrated that OpV2 is a novel geminivirus more closely related to viruses of the genus Curtovirus, which was further supported by the detection of three recombination events between curtoviruses and OpV2. Both OpV2 and Opuntia becurtoviruses were identified in mixed infections, which also included the previously characterized Opuntia virus 1. Viral quantification of the co-infected cactus plants compared with single infections did not show any clear trend in viral dynamics that might be associated with the mixed infections. Using experimental Rhizobium-mediated inoculations, we found that the initial accumulation of OpV2 is facilitated by co-infection with OpV1. This study shows that the diversity of geminiviruses that infect cacti is under-sampled and that cacti harbor diverse geminiviruses. The detection of the Opuntia becurtoviruses suggests spill-over events between viruses of cultivated species and native vegetation. The threat this poses to cacti needs to be further investigated

    A Pilot Study Investigating the Dynamics of Pigeon Circovirus Recombination in Domesticated Pigeons Housed in a Single Loft

    No full text
    Pigeon circovirus (PiCV) infects pigeon populations worldwide and has been associated with immunosuppression in younger pigeons. Recombination is a common mechanism of evolution that has previously been shown in various members of the Circoviridae family, including PiCV. In this study, three groups of pigeons acquired from separate lofts were screened for PiCV, and their genome sequence was determined. Following this, they were housed in a single loft for 22 days, during which blood and cloacal swab samples were taken. From these blood and cloacal swabs, PiCV genomes were determined with the aim to study the spread and recombination dynamics of PiCV in the birds. Genome sequences of PiCV were determined from seven pigeons (seven tested PiCV positive) before they were housed together in a loft (n = 58 sequences) and thereafter from the ten pigeons from blood and cloacal swabs (n = 120). These 178 PiCV genome sequences represent seven genotypes (98% pairwise identity genotype demarcation), and they share >88% genome-wide pairwise identity. Recombination analysis revealed 13 recombination events, and a recombination hotspot spanning the 3â€Č prime region, the replication-associated protein (rep) gene and the intergenic region. A cold spot in the capsid protein-coding region of the genome was also identified. The majority of the recombinant regions were identified in the rep coding region. This study provides insights into the evolutionary dynamics of PiCV in pigeons kept under closed rearing systems

    Primate TRIM34 is a broadly-acting, TRIM5-dependent lentiviral restriction factor

    No full text
    Abstract Human immunodeficiency virus (HIV) and other lentiviruses adapt to new hosts by evolving to evade host-specific innate immune proteins that differ in sequence and often viral recognition between host species. Understanding how these host antiviral proteins, called restriction factors, constrain lentivirus replication and transmission is key to understanding the emergence of pandemic viruses like HIV-1. Human TRIM34, a paralogue of the well-characterized lentiviral restriction factor TRIM5α, was previously identified by our lab via CRISPR-Cas9 screening as a restriction factor of certain HIV and SIV capsids. Here, we show that diverse primate TRIM34 orthologues from non-human primates can restrict a range of Simian Immunodeficiency Virus (SIV) capsids including SIVAGM−SAB, SIVAGM−TAN and SIVMAC capsids, which infect sabaeus monkeys, tantalus monkeys, and rhesus macaques, respectively. All primate TRIM34 orthologues tested, regardless of species of origin, were able to restrict this same subset of viral capsids. However, in all cases, this restriction also required the presence of TRIM5α. We demonstrate that TRIM5α is necessary, but not sufficient, for restriction of these capsids, and that human TRIM5α functionally interacts with TRIM34 from different species. Finally, we find that both the TRIM5α SPRY v1 loop and the TRIM34 SPRY domain are essential for TRIM34-mediated restriction. These data support a model in which TRIM34 is a broadly-conserved primate lentiviral restriction factor that acts in tandem with TRIM5α, such that together, these proteins can restrict capsids that neither can restrict alone
    corecore