3,249 research outputs found

    Sedimentology and microfacies of a mud-rich slope succession: in the Carboniferous Bowland Basin, NW England (UK)

    Get PDF
    A paucity of studies on mud-rich basin slope successions has resulted in a significant gap in our sedimentological understanding in these settings. Here, macro- and micro-scale analysis of mudstone composition, texture and organic matter was undertaken on a continuous core through a mud-dominated slope succession from the Marl Hill area in the Carboniferous Bowland Basin. Six lithofacies, all dominated by turbidites and debrites, combine into three basin slope facies associations: sediment-starved slope, slope dominated by low-density turbidites and slope dominated by debrites. Variation in slope sedimentation was a function of relative sea-level change, with the sediment-starved slope occurring during maximum flooding of the contemporaneous shelf, and the transition towards a slope dominated by turbidites and then debrites occurring during normal or forced shoreline progradation towards the shelf margin. The sediment-starved slope succession is dominated by Type II kerogen, whereas the slope dominated by low-density turbidites is dominated by Type III kerogen. This study suggests that mud-dominated lower slope settings are largely active depositional sites, with consistent evidence for sediment traction. Additionally, the composition and texture of basin slope mudstones, as well as organic content, vary predictably as a function of shelf processes linked to relative sea-level change

    Can One-Run-Fixed-Arrhenius Kerogen Analysis Provide Comparable Organofacies Results to Detailed Palynological Analysis? A Case Study from a Prospective Mississippian Source Rock Reservoir (Bowland Shale, UK)

    Get PDF
    Organofacies analysis, a fundamental component within source rock appraisal based on the study of kerogen within a source rock, is typically produced from microscopy (palynological) and geochemical (kerogen kinetic) data, both of which are costly to acquire. One-Run-Fixed-Arrhenius (ORFA) kerogen kinetic analysis based on Rock–Eval pyrolysis offers a substantially cheaper kinetic dataset. Here, ORFA and palynological analyses are compared in organofacies characterization of a prospective Mississippian source rock reservoir (Bowland Shale, UK). Two-end-member organofacies were determined based on the abundance of the 56 kcal/mol activation energy peak derived from ORFA data: absence ( 15%) indicating ‘organofacies B’ containing the highest proportion of sporomorphs (Type II kerogen). A mud-dominated slope setting for the rock reservoir was also used to test the accuracy of organofacies analysis in determining depositional environment. Organofacies A found within lithofacies deposited from dilute waning density flows and hemipelagic suspension settling occurred between shelf edge, slope and basin. Organofacies B found within lithofacies deposited from dilute waning density flows, and low-strength cohesive debrites occurred only within the lower slope. This study demonstrates that ORFA kerogen kinetic analysis provides comparable net results to palynological analysis, enabling cheaper and faster organic characterization during initial source rock appraisal. However, caution must be exercised in drawing interpretations as to biological source(s), organic matter mixing and preservation state(s) without additional investigation using data from detailed palynological analysis

    Characterisation of road-dust sediment in urban systems: a review of a global challenge

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2020-04-14, accepted 2020-10-08, registration 2020-10-09, pub-electronic 2020-10-21, online 2020-10-21, pub-print 2020-12Publication status: PublishedFunder: University of ManchesterAbstract: Purpose: The proportion of people living in urbanised areas is predicted to rise to > 65% by 2050, and therefore, more humans than ever will be exposed to urban environmental pollution. Accumulation of organic and inorganic substances on street and road surfaces is a major global challenge requiring scientifically robust methods of establishing risk that inform management strategies. This aim of this contribution is to critically review the global literature on urban road–deposited sediment contamination with a specific focus on variability in sampling and analytical methods. Materials and methods: In order to assess the concentration of contaminants in global road-deposited sediment (RDS), a comprehensive search of published RDS studies was completed. We review methodological approaches used in RDS studies to highlight the variability in datasets as a result of sampling technique, grain size fractionation, geochemical and mineralogical characterisation methods and establishing the influence of local geology on contaminant concentrations. We also consider emerging contaminants in RDS, and we provide a workflow diagram which promotes a standardised sampling and analysis regime that we believe can reduce data variability and promote collaboration when it comes to tackling the important issue of RDS contamination. Results and discussion: Across the literature, Asia (except China) and Africa are underrepresented in RDS studies despite these continents having the largest and fastest growing populations, respectively. The removal of tetraethyl lead from gasoline produced a noticeable decrease in lead concentrations in global RDS, and platinum group element (PGE) concentrations in RDS were consistent with catalytic converter usage. Research into the impact of electric vehicles on non-exhaust emissions suggests other contaminants such as zinc may become more prominent in the future. Most RDS studies consider grain size fractions larger than > 20 μm due to sampling constraints despite RDS < 20 μm being most relevant to human health. The use of chemical extraction methods to establish contaminant geochemistry is popular; however, most extraction procedures are not relevant or specific to minerals identified in RDS through microscopic and spectroscopic investigations. Conclusions: This review highlights considerable variability in sampling and analytical approach which makes it difficult to identify broad global patterns in RDS contamination. To remove this variability from future RDS research, this review suggests a workflow plan which attempts to improve the comparability between RDS studies. Such comparability is crucial in identifying more discrete RDS trends and informing future emission policy

    Energy Cost of Slow and Normal Gait Speeds in Low and Normally Functioning Adults

    Get PDF
    Objective Slow walking speed paired with increased energy cost is a strong predictor for mortality and disability in older adults but has yet to be examined in a heterogeneous sample (ie, age, sex, disease status). The aim of this study was to examine energy cost of slow and normal walking speeds among low- and normal-functioning adults. Design Adults aged 20–90 yrs were recruited for this study. Participants completed a 10-m functional walk test at a self-selected normal walking speed and were categorized as low functioning or normal functioning based on expected age- and sex-adjusted average gait speed. Participants completed two successive 3-min walking stages, at slower than normal and normal walking speeds, respectively. Gas exchange was measured and energy cost per meter (milliliter per kilogram per meter) was calculated for both walking speeds. Results Energy cost per meter was higher (P \u3c 0.0001) in the low-functioning group (n = 76; female = 59.21%; mean ± SD age = 61.13 ± 14.68 yrs) during the slower than normal and normal (P \u3c 0.0001) walking speed bouts compared with the normal-functioning group (n = 42; female = 54.76%; mean ± SD age = 51.55 ± 19.51 yrs). Conclusions Low-functioning adults rely on greater energy cost per meter of walking at slower and normal speeds. This has implications for total daily energy expenditure in low-functioning, adult populations

    Efficient and exact sampling of simple graphs with given arbitrary degree sequence

    Get PDF
    Uniform sampling from graphical realizations of a given degree sequence is a fundamental component in simulation-based measurements of network observables, with applications ranging from epidemics, through social networks to Internet modeling. Existing graph sampling methods are either link-swap based (Markov-Chain Monte Carlo algorithms) or stub-matching based (the Configuration Model). Both types are ill-controlled, with typically unknown mixing times for link-swap methods and uncontrolled rejections for the Configuration Model. Here we propose an efficient, polynomial time algorithm that generates statistically independent graph samples with a given, arbitrary, degree sequence. The algorithm provides a weight associated with each sample, allowing the observable to be measured either uniformly over the graph ensemble, or, alternatively, with a desired distribution. Unlike other algorithms, this method always produces a sample, without back-tracking or rejections. Using a central limit theorem-based reasoning, we argue, that for large N, and for degree sequences admitting many realizations, the sample weights are expected to have a lognormal distribution. As examples, we apply our algorithm to generate networks with degree sequences drawn from power-law distributions and from binomial distributions.Comment: 8 pages, 3 figure

    The Mass Assembly History of Field Galaxies: Detection of an Evolving Mass Limit for Star Forming Galaxies

    Get PDF
    We characterize the mass-dependent evolution in a large sample of more than 8,000 galaxies using spectroscopic redshifts drawn from the DEEP2 Galaxy Redshift Survey in the range 0.4 < z < 1.4 and stellar masses calculated from K-band photometry obtained at Palomar Observatory. Using restframe (U-B) color and [OII] equivalent widths, we distinguish star-forming from passive populations in order to explore the nature of "downsizing''--a pattern in which the sites of active star formation shift from high mass galaxies at early times to lower mass systems at later epochs. Over the redshift range probed, we identify a mass limit, M_Q, above which star formation appears to be quenched. The physical mechanisms responsible for downsizing can thus be empirically quantified by charting the evolution in this threshold mass. We find that M_Q decreases with time by a factor of ~3 across the redshift range sampled according with a redshift dependence of (1+z)^3.5. To further constrain possible quenching mechanisms, we investigate how this downsizing signal depends on local galaxy environment. For the majority of galaxies in regions near the median density, there is no significant correlation between downsizing and environment. However, a trend is observed in the comparison between more extreme environments that are more than 3 times overdense or underdense relative to the median. Here, we find that downsizing is accelerated in overdense regions which host higher numbers of massive, early-type galaxies and fewer late-types as compared to the underdense regions. Our results significantly constrain recent suggestions for the origin of downsizing and indicate that the process for quenching star formation must, primarily, be internally driven. (Abridged)Comment: Accepted to ApJ, revised version addressing referee's comments, 23 pages, 13 figure

    Simultaneous quantification of 12 different nucleotides and nucleosides released from renal epithelium and in human urine samples using ion-pair reversed-phase HPLC

    Get PDF
    Nucleotides and nucleosides are not only involved in cellular metabolism but also act extracellularly via P1 and P2 receptors, to elicit a wide variety of physiological and pathophysiological responses through paracrine and autocrine signalling pathways. For the first time, we have used an ion-pair reversed-phase high-performance liquid chromatography ultraviolet (UV)-coupled method to rapidly and simultaneously quantify 12 different nucleotides and nucleosides (adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, adenosine, uridine triphosphate, uridine diphosphate, uridine monophosphate, uridine, guanosine triphosphate, guanosine diphosphate, guanosine monophosphate, guanosine): (1) released from a mouse renal cell line (M1 cortical collecting duct) and (2) in human biological samples (i.e., urine). To facilitate analysis of urine samples, a solid-phase extraction step was incorporated (overall recovery rate ? 98 %). All samples were analyzed following injection (100 ?l) into a Synergi Polar-RP 80 Å (250 × 4.6 mm) reversed-phase column with a particle size of 10 ?m, protected with a guard column. A gradient elution profile was run with a mobile phase (phosphate buffer plus ion-pairing agent tetrabutylammonium hydrogen sulfate; pH 6) in 2-30 % acetonitrile (v/v) for 35 min (including equilibration time) at 1 ml min(-1) flow rate. Eluted compounds were detected by UV absorbance at 254 nm and quantified using standard curves for nucleotide and nucleoside mixtures of known concentration. Following validation (specificity, linearity, limits of detection and quantitation, system precision, accuracy, and intermediate precision parameters), this protocol was successfully and reproducibly used to quantify picomolar to nanomolar concentrations of nucleosides and nucleotides in isotonic and hypotonic cell buffers that transiently bathed M1 cells, and urine samples from normal subjects and overactive bladder patients

    Trypanocidal and leishmanicidal activity of six limonoids

    Get PDF
    Six limonoids [kotschyienone A and B (1, 2), 7-deacetylgedunin (3), 7-deacetyl-7-oxogedunin (4), andirobin (5) and methyl angolensate (6)] were investigated for their trypanocidal and leishmanicidal activities using bloodstream forms of Trypanosoma brucei and promastigotes of Leishmania major. Whereas all compounds showed anti-trypanosomal activity, only compounds 1–4 displayed anti-leishmanial activity. The 50% growth inhibition (GI 50) values for the trypanocidal and leishmanicidal activity of the compounds ranged between 2.5 and 14.9 μM. Kotschyienone A (1) was found to be the most active compound with a minimal inhibition concentration (MIC) value of 10 μM and GI 50 values between 2.5 and 2.9 μM. Only compounds 1 and 3 showed moderate cytotoxicity against HL-60 cells with MIC and GI 50 values of 100 μM and 31.5–46.2 μM, respectively. Compound 1 was also found to show activity against intracellular amastigotes of L. major with a GI 50 value of 1.5 μM. The results suggest that limonoids have potential as drug candidates for the development of new treatments against trypanosomiasis and leishmaniasis

    ‘Priming’ exercise and O2 uptake kinetics during treadmill running

    Get PDF
    We tested the hypothesis that priming exercise would speed kinetics during treadmill running. Eight subjects completed a square-wave protocol, involving two bouts of treadmill running at 70% of the difference between the running speeds at lactate threshold (LT) and max, separated by 6-min of walking at 4 km h−1, on two occasions. Oxygen uptake was measured breath-by-breath and subsequently modelled using non-linear regression techniques. Heart rate and blood lactate concentration were significantly elevated prior to the second exercise bout compared to the first. However, kinetics was not significantly different between the first and second exercise bouts (mean ± S.D., phase II time constant, Bout 1: 16 ± 3 s vs. Bout 2: 16 ± 4 s; slow component amplitude, Bout 1: 0.24 ± 0.10 L min−1vs. Bout 2: 0.20 ± 0.12 L min−1; mean response time, Bout 1: 34 ± 4 s vs. Bout 2: 34 ± 6 s; P > 0.05 for all comparisons). These results indicate that, contrary to previous findings with other exercise modalities, priming exercise does not alter kinetics during high-intensity treadmill running, at least in physically active young subjects. We speculate that the relatively fast kinetics and the relatively small slow component in the control (‘un-primed’) condition negated any enhancement of kinetics by priming exercise in this exercise modality
    • …
    corecore