2,344 research outputs found

    Modeling molecular hyperfine line emission

    Full text link
    In this paper we discuss two approximate methods previously suggested for modeling hyperfine spectral line emission for molecules whose collisional transitions rates between hyperfine levels are unknown. Hyperfine structure is seen in the rotational spectra of many commonly observed molecules such as HCN, HNC, NH3, N2H+, and C17O. The intensities of these spectral lines can be modeled by numerical techniques such as Lambda-iteration that alternately solve the equations of statistical equilibrium and the equation of radiative transfer. However, these calculations require knowledge of both the radiative and collisional rates for all transitions. For most commonly observed radio frequency spectral lines, only the net collisional rates between rotational levels are known. For such cases, two approximate methods have been suggested. The first method, hyperfine statistical equilibrium (HSE), distributes the hyperfine level populations according to their statistical weight, but allows the population of the rotational states to depart from local thermodynamic equilibrium (LTE). The second method, the proportional method approximates the collision rates between the hyperfine levels as fractions of the net rotational rate apportioned according to the statistical degeneracy of the final hyperfine levels. The second method is able to model non-LTE hyperfine emission. We compare simulations of N2H+ hyperfine lines made with approximate and more exact rates and find that satisfactory results are obtained.Comment: 34 pages. Pages 22-34 are data tables. For ApJ

    The standard model of star formation applied to massive stars: accretion disks and envelopes in molecular lines

    Full text link
    We address the question of whether the formation of high-mass stars is similar to or differs from that of solar-mass stars through new molecular line observations and modeling of the accretion flow around the massive protostar IRAS20126+4104. We combine new observations of NH3(1,1) and (2,2) made at the Very Large Array, new observations of CHCN(13-12) made at the Submillimeter Array, previous VLA observations of NH(3,3), NH(4,4), and previous Plateau de Bure observations of C34S(2-1), C34S(5-4), and CHCN(12-11) to obtain a data set of molecular lines covering 15 to 419 K in excitation energy. We compare these observations against simulated molecular line spectra predicted from a model for high-mass star formation based on a scaled-up version of the standard disk-envelope paradigm developed for accretion flows around low-mass stars. We find that in accord with the standard paradigm, the observations require both a warm, dense, rapidly-rotating disk and a cold, diffuse infalling envelope. This study suggests that accretion processes around 10 M stars are similar to those of solar mass stars.Comment: Accepted MNRA

    High Resolution CO Observations of Massive Star Forming Regions

    Full text link
    Context. To further understand the processes involved in the formation of massive stars, we have undertaken a study of the gas dynamics surrounding three massive star forming regions. By observing the large scale structures at high resolution, we are able to determine properties such as driving source, and spatially resolve the bulk dynamical properties of the gas such as infall and outflow. Aims. With high resolution observations, we are able to determine which of the cores in a cluster forming massive stars is responsible for the large scale structures. Methods. We present CO observations of three massive star forming regions with known HII regions and show how the CO traces both infall and outflow. By combining data taken in two SMA configurations with JCMT observations, we are able to see large scale structures at high resolution. Results. We find large (0.26-0.40 pc), massive (2-3 M_sun) and energetic (13-17 \times 10^44 erg) outflows emanating from the edges of two HII regions suggesting they are being powered by the protostar(s) within. We find infall signatures in two of our sources with mass infall rates of order 10-4 M_sun/yr. Conclusions. We suggest that star formation is ongoing in these sources despite the presence of HII regions. We further conclude that the source(s) within a single HII region are responsible for the observed large scale structures; that these large structures are not the net effect of multiple outflows from multiple HII regions and hot cores.Comment: 8 pages,2 figures, accepted for publication in A&

    Interferometric array design: optimizing the locations of the antenna pads

    Get PDF
    The design of an interferometric array should allow optimal instrumental response regarding all possible source positions, times of integration and scientific goals. It should also take into account constraints such as forbidden regions on the ground due to impracticable topography. The complexity of the problem requires one to proceed by steps. A possible approach is to first consider a single observation and a single scientific purpose. A new algorithm is introduced to solve efficiently this particular problem called the configuration problem. It is based on the computation of pressure forces related to the discrepancies between the model (as determined by the scientific purpose) and the actual distribution of Fourier samples. The flexibility and rapidity of the method are well adapted to the full array design. A software named APO that can be used for the design of new generation interferometers such as ALMA and ATA has been developed.Comment: 9 pages, 7 figure

    Dynamic analysis of space structures including elastic, multibody, and control behavior

    Get PDF
    The problem is to develop analysis methods, modeling stategies, and simulation tools to predict with assurance the on-orbit performance and integrity of large complex space structures that cannot be verified on the ground. The problem must incorporate large reliable structural models, multi-body flexible dynamics, multi-tier controller interaction, environmental models including 1g and atmosphere, various on-board disturbances, and linkage to mission-level performance codes. All areas are in serious need of work, but the weakest link is multi-body flexible dynamics

    Chemistry and Radiative Transfer of Water in Cold, Dense Clouds

    Full text link
    The Herschel Space Observatory's recent detections of water vapor in the cold, dense cloud L1544 allow a direct comparison between observations and chemical models for oxygen species in conditions just before star formation. We explain a chemical model for gas phase water, simplified for the limited number of reactions or processes that are active in extreme cold (<< 15 K). In this model, water is removed from the gas phase by freezing onto grains and by photodissociation. Water is formed as ice on the surface of dust grains from O and OH and released into the gas phase by photodesorption. The reactions are fast enough with respect to the slow dynamical evolution of L1544 that the gas phase water is in equilibrium for the local conditions thoughout the cloud. We explain the paradoxical radiative transfer of the H2_2O (1101011_{10}-1_{01}) line. Despite discouragingly high optical depth caused by the large Einstein A coefficient, the subcritical excitation in the cold, rarefied H2_2 causes the line brightness to scale linearly with column density. Thus the water line can provide information on the chemical and dynamical processes in the darkest region in the center of a cold, dense cloud. The inverse P-Cygni profile of the observed water line generally indicates a contracting cloud. This profile is reproduced with a dynamical model of slow contraction from unstable quasi-static hydrodynamic equilibrium (an unstable Bonnor-Ebert sphere).Comment: submitted to MNRA

    Dynamics and Depletion in Thermally Supercritical Starless Cores

    Full text link
    In previous studies we identified two classes of starless cores, thermally subcritical and supercritical, distinguished by different dynamical behavior and internal structure. Here we study the evolution of the dynamically-unstable, thermally-supercritical cores by means of a numerical hydrodynamic simulation that includes radiative equilibrium and simple molecular chemistry. We use our non-LTE radiative transfer code MOLLIE to predict observable CO and N2H+ line spectra, including the non-LTE hyperfine ratios of N2H+, during the contraction. These are compared against observations of the starless core L1544.Comment: accepted for publication in MNRA
    corecore