72 research outputs found

    Visfatin exerts angiogenic effects on human umbilical vein endothelial cells through the mTOR signaling pathway

    Get PDF
    AbstractThe biologically active factors known as adipocytokines are secreted primarily by adipose tissues and can act as modulators of angiogenesis. Visfatin, an adipocytokine that has recently been reported to have angiogenic properties, is upregulated in diabetes, cancer, and inflammatory diseases. Because maintenance of an angiogenic balance is critically important in the management of these diseases, understanding the molecular mechanism by which visfatin promotes angiogenesis is very important. In this report, we describe our findings demonstrating that visfatin stimulates the mammalian target of the rapamycin (mTOR) pathway, which plays important roles in angiogenesis. Visfatin induced the expression of hypoxia-inducible factor 1α (HIF1α) and vascular endothelial growth factor (VEGF) in human endothelial cells. Inhibition of the mTOR pathway by rapamycin eliminated the angiogenic and proliferative effects of visfatin. The visfatin-induced increase in VEGF expression was also eliminated by RNA interference-mediated knockdown of the 70-kDa ribosomal protein S6 kinase (p70S6K), a downstream target of mTOR. Visfatin inactivated glycogen synthase kinase 3β (GSK3β) by phosphorylating it at Ser-9, leading to the nuclear translocation of β-catenin. Both rapamycin co-treatment and p70S6K knockdown inhibited visfatin-induced GSK3β phosphorylation at Ser-9 and nuclear translocation of β-catenin. Taken together, these results indicate that mTOR signaling is involved in visfatin-induced angiogenesis, and that this signaling leads to visfatin-induced VEGF expression and nuclear translocation of β-catenin

    Characterization of diverse natural variants of CYP102A1 found within a species of Bacillus megaterium

    Get PDF
    An extreme diversity of substrates and catalytic reactions of cytochrome P450 (P450) enzymes is considered to be the consequence of evolutionary adaptation driven by different metabolic or environmental demands. Here we report the presence of numerous natural variants of P450 BM3 (CYP102A1) within a species of Bacillus megaterium. Extensive amino acid substitutions (up to 5% of the total 1049 amino acid residues) were identified from the variants. Phylogenetic analyses suggest that this P450 gene evolve more rapidly than the rRNA gene locus. It was found that key catalytic residues in the substrate channel and active site are retained. Although there were no apparent variations in hydroxylation activity towards myristic acid (C14) and palmitic acid (C16), the hydroxylation rates of lauric acid (C12) by the variants varied in the range of >25-fold. Interestingly, catalytic activities of the variants are promiscuous towards non-natural substrates including human P450 substrates. It can be suggested that CYP102A1 variants can acquire new catalytic activities through site-specific mutations distal to the active site

    Cotransplanted Bone Marrow Derived Mesenchymal Stem Cells (MSC) Enhanced Engraftment of Hematopoietic Stem Cells in a MSC-dose Dependent Manner in NOD/SCID Mice

    Get PDF
    Transplantation of marrow-derived mesenchymal stem cells (MSCs), expanded by culture in addition to whole bone marrow, has been shown to enhance engraftment of human hematopoietic stem cells (HSCs). Our hypothesis was that there might be an optimum ratio range that could enhance engraftment. We examined the percent donor chimerism according to the ratio of HSCs to MSCs in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice. We tested a series of ratios of co-transplanted CD34+-selected bone marrow cells, and marrow-derived MSCs into sublethally irradiated NOD/SCID mice. In all experiments, 1×105 bone marrow derived human CD34+ cells were administered to each mouse and human MSCs from different donors were infused concomitantly. We repeated the procedure three times and evaluated engraftment with flow cytometry four weeks after each transplantation. Serial ratios of HSCs to MSCs were 1:0, 1:1, 1:2 and 1:4, in the first experiment, 1:0, 1:1, 1:2, 1:4 and 1:8 in the second and 1:0, 1:1, 1:4, 1:8 and 1:16 in the third. Cotransplantation of HSCs and MSCs enhanced engraftment as the dose of MSCs increased. Our results suggest that the optimal ratio of HSCs and MSCs for cotransplantation might be in the range of 1:8-1:16; whereas, an excessive dose of MSCs might decrease engraftment efficiency

    Genome-wide association study of mammary gland tumors in Maltese dogs

    Get PDF
    BackgroundA genome-wide association study (GWAS) is a valuable tool for investigating genetic and phenotypic variation in many diseases.ObjectiveThe objective of this study was to identify variations in the genomes of Maltese dogs that are associated with the mammary gland tumor (MGT) phenotype and to assess the association between each biological condition and MGT phenotype in Maltese dogs.MethodsDNA was extracted from 22 tumor samples and 11 whole blood samples from dogs with MGTs. Genome-wide single-nucleotide polymorphism (SNP) genotyping was performed, and the top 20 SNPs associated with various conditions and genetic variations were mapped to their corresponding gene locations.ResultsThe genotyping process successfully identified 173,662 loci, with an overall genotype completion rate of 99.92%. Through the quality control analysis, 46,912 of these SNPs were excluded. Allelic tests were conducted to generate Manhattan plots, which showed several significant SNPs associated with MGT phenotype in intergenic region. The most prominent SNP, located within a region associated with transcription and linked to the malignancy grade of MGT, was identified on chromosome 5 (p = 0.00001) though there may be lack of statistical significance. Other SNPs were also found in several genes associated with oncogenesis, including TNFSF18, WDR3, ASIC5, STAR, and IL1RAP.ConclusionTo our knowledge, this is the first GWAS to analyze the genetic predisposition to MGT in Maltese dogs. Despite the limited number of cases, these analyzed data could provide the basis for further research on the genetic predisposition to MGTs in Maltese dogs

    Retrospective analyses of cisplatin-based doublet combination chemotherapy in patients with advanced gastric cancer

    Get PDF
    <p>Abstract</p> <p>Backgrounds</p> <p>Cisplatin-based chemotherapy, in combination with fluoropyrimidines or taxanes, have demonstrated efficacy against advanced gastric cancer (AGC). This retrospective study was performed with the data obtained from our cancer chemotherapy registry and eight another cancer centers.</p> <p>Methods</p> <p>In 2008, a total of 283 AGC patients were treated with cisplatin-based doublet chemotherapy in the first-line setting: capecitabine plus cisplatin (XP, n = 77), S-1 plus cisplatin (SP, n = 97), taxanes (docetaxel, paclitaxel) plus cisplatin (TP, n = 72), and 5-fluorouracil plus platinum (FP, n = 37). The primary endpoint of this study was overall survival (OS) and the secondary endpoints were safety, response rate and progression-free survival (PFS).</p> <p>Results</p> <p>The median age was 54 years with a range of 28-78 years and median delivered number of chemotherapy cycles were XP: 4, SP: 5, TP: 5 and FP: 5, respectively. Objective tumor responses (38%; 95% CI, 32-43%) were 40% for XP, 42% for SP, 36% for DP, and 24% for FP. The estimated median PFS was 4.5 months (95% CI, 3.6-5.4 months) and the median OS was 12.3 months (95% CI, 10.8-13.7 months). No statistically significant difference was found between each regimen used as first-line chemotherapy. At multivariate analysis, independent prognostic parameters for OS were prior gastrectomy, peritoneal dissemination, performance status and hemoglobin level</p> <p>Conclusion</p> <p>All of the cisplatin-based doublet chemotherapy regimens appear to be active as first-line chemotherapy for AGC. With better patient selection according to clinical parameters and molecular markers, clinical outcomes of AGC patients in first-line setting can be improved.</p

    Cardiovascular events and safety outcomes associated with remdesivir using a World Health Organization international pharmacovigilance database

    Get PDF
    On October 2020, the US Food and Drug Administration (FDA) approved remdesivir as the first drug for the treatment of coronavirus disease 2019 (COVID-19), increasing remdesivir prescriptions worldwide. However, potential cardiovascular (CV) toxicities associated with remdesivir remain unknown. We aimed to characterize the CV adverse drug reactions (ADRs) associated with remdesivir using VigiBase, an individual case safety report database of the World Health Organization (WHO). Disproportionality analyses of CV-ADRs associated with remdesivir were performed using reported odds ratios and information components. We conducted in vitro experiments using cardiomyocytes derived from human pluripotent stem cell cardiomyocytes (hPSC-CMs) to confirm cardiotoxicity of remdesivir. To distinguish drug-induced CV-ADRs from COVID-19 effects, we restricted analyses to patients with COVID-19 and found that, after adjusting for multiple confounders, cardiac arrest (adjusted odds ratio [aOR]: 1.88, 95% confidence interval [CI]: 1.08–3.29), bradycardia (aOR: 2.09, 95% CI: 1.24–3.53), and hypotension (aOR: 1.67, 95% CI: 1.03–2.73) were associated with remdesivir. In vitro data demonstrated that remdesivir reduced the cell viability of hPSC-CMs in time- and dose-dependent manners. Physicians should be aware of potential CV consequences following remdesivir use and implement adequate CV monitoring to maintain a tolerable safety margin

    The 'Harmonizing Optimal Strategy for Treatment of coronary artery stenosis - sAfety & effectiveneSS of drug-elUting stents & antiplatelet REgimen' (HOST-ASSURE) trial: study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Second-generation drug-eluting stents (DES) have raised the bar of clinical performance. These stents are mostly made from cobalt chromium alloy. A newer generation DES has been developed from platinum chromium alloy, but clinical data regarding the efficacy and safety of the platinum chromium-based everolimus-eluting stent (PtCr-EES) is limited, with no comparison data against the cobalt chromium-based zotarolimus-eluting stent (CoCr-ZES). In addition, an antiplatelet regimen is an integral component of medical therapy after percutaneous coronary intervention (PCI). A 1-week duration of doubling the dose of clopidogrel (double-dose antiplatelet therapy (DDAT)) was shown to improve outcome at 1 month compared with conventional dose in acute coronary syndrome (ACS) patients undergoing PCI. However in Asia, including Korea, the addition of cilostazol (triplet antiplatelet therapy (TAT)) is used more commonly than doubling the dose of clopidogrel in high-risk patients.</p> <p>Methods</p> <p>In the 'Harmonizing Optimal Strategy for Treatment of coronary artery stenosis - sAfety & effectiveneSS of drug-elUting stents & antiplatelet REgimen' (HOST-ASSURE) trial, approximately 3,750 patients are being prospectively and randomly assigned in a 2 × 2 factorial design according to the type of stent (PtCr-EES vs CoCr-ZES) and antiplatelet regimen (TAT vs DDAT). The first primary endpoint is target lesion failure at 1 year for the stent comparison, and the second primary endpoint is net clinical outcome at 1 month for comparison of antiplatelet therapy regimen.</p> <p>Discussion</p> <p>The HOST-ASSURE trial is the largest study yet performed to directly compare the efficacy and safety of the PtCr-EES versus CoCr-ZES in an 'all-comers' population. In addition, this study will also compare the clinical outcome of TAT versus DDAT for 1-month post PCI.</p> <p>Trial registration</p> <p>ClincalTrials.gov number <a href="http://www.clinicaltrials.gov/ct2/show/NCT01267734">NCT01267734</a>.</p

    Measuring routine childhood vaccination coverage in 204 countries and territories, 1980-2019 : a systematic analysis for the Global Burden of Disease Study 2020, Release 1

    Get PDF
    Background Measuring routine childhood vaccination is crucial to inform global vaccine policies and programme implementation, and to track progress towards targets set by the Global Vaccine Action Plan (GVAP) and Immunization Agenda 2030. Robust estimates of routine vaccine coverage are needed to identify past successes and persistent vulnerabilities. Drawing from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020, Release 1, we did a systematic analysis of global, regional, and national vaccine coverage trends using a statistical framework, by vaccine and over time. Methods For this analysis we collated 55 326 country-specific, cohort-specific, year-specific, vaccine-specific, and dosespecific observations of routine childhood vaccination coverage between 1980 and 2019. Using spatiotemporal Gaussian process regression, we produced location-specific and year-specific estimates of 11 routine childhood vaccine coverage indicators for 204 countries and territories from 1980 to 2019, adjusting for biases in countryreported data and reflecting reported stockouts and supply disruptions. We analysed global and regional trends in coverage and numbers of zero-dose children (defined as those who never received a diphtheria-tetanus-pertussis [DTP] vaccine dose), progress towards GVAP targets, and the relationship between vaccine coverage and sociodemographic development. Findings By 2019, global coverage of third-dose DTP (DTP3; 81.6% [95% uncertainty interval 80.4-82 .7]) more than doubled from levels estimated in 1980 (39.9% [37.5-42.1]), as did global coverage of the first-dose measles-containing vaccine (MCV1; from 38.5% [35.4-41.3] in 1980 to 83.6% [82.3-84.8] in 2019). Third- dose polio vaccine (Pol3) coverage also increased, from 42.6% (41.4-44.1) in 1980 to 79.8% (78.4-81.1) in 2019, and global coverage of newer vaccines increased rapidly between 2000 and 2019. The global number of zero-dose children fell by nearly 75% between 1980 and 2019, from 56.8 million (52.6-60. 9) to 14.5 million (13.4-15.9). However, over the past decade, global vaccine coverage broadly plateaued; 94 countries and territories recorded decreasing DTP3 coverage since 2010. Only 11 countries and territories were estimated to have reached the national GVAP target of at least 90% coverage for all assessed vaccines in 2019. Interpretation After achieving large gains in childhood vaccine coverage worldwide, in much of the world this progress was stalled or reversed from 2010 to 2019. These findings underscore the importance of revisiting routine immunisation strategies and programmatic approaches, recentring service delivery around equity and underserved populations. Strengthening vaccine data and monitoring systems is crucial to these pursuits, now and through to 2030, to ensure that all children have access to, and can benefit from, lifesaving vaccines. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries

    Complete mitochondrial genome of Ischnura asiatica (Brauer, 1865) assembled from next-generation sequencing data

    No full text
    Ischnura asiatica (Brauer, 1865) is a freshwater damselfly belonging to the family Coenagrionidae that is distributed across most of Korea, primarily in areas with low water flow, such as ponds and wetlands. The complete mitochondrial genome of I. asiatica was sequenced by next-generation sequencing. The circular mitochondrial genome was found to be 15,769 bp long, with of 13 protein-coding, two ribosomal RNA, and 22 transfer RNA genes (GenBank accession no. OM310774). Maximum likelihood, phylogenetic analysis showed that this species clustered with other species belonging to the family Coenagrionidae. This study contributes to the phylogeny of damselflies and other members of the family Coenagrionidae
    corecore