232 research outputs found

    Movement variability in stroke patients and controls performing two upper limb functional tasks: a new assessment methodology

    Get PDF
    Background: In the evaluation of upper limb impairment post stroke there remains a gap between detailed kinematic analyses with expensive motion capturing systems and common clinical assessment tests. In particular, although many clinical tests evaluate the performance of functional tasks, metrics to characterise upper limb kinematics are generally not applicable to such tasks and very limited in scope. This paper reports on a novel, user-friendly methodology that allows for the assessment of both signal magnitude and timing variability in upper limb movement trajectories during functional task performance. In order to demonstrate the technique, we report on a study in which the variability in timing and signal magnitude of data collected during the performance of two functional tasks is compared between a group of subjects with stroke and a group of individually matched control subjects. Methods: We employ dynamic time warping for curve registration to quantify two aspects of movement variability: 1) variability of the timing of the accelerometer signals' characteristics and 2) variability of the signals' magnitude. Six stroke patients and six matched controls performed several trials of a unilateral ('drinking') and a bilateral ('moving a plate') functional task on two different days, approximately 1 month apart. Group differences for the two variability metrics were investigated on both days. Results: For 'drinking from a glass' significant group differences were obtained on both days for the timing variability of the acceleration signals' characteristics (p = 0.002 and p = 0.008 for test and retest, respectively); all stroke patients showed increased signal timing variability as compared to their corresponding control subject. 'Moving a plate' provided less distinct group differences. Conclusion: This initial application establishes that movement variability metrics, as determined by our methodology, appear different in stroke patients as compared to matched controls during unilateral task performance ('drinking'). Use of a user-friendly, inexpensive accelerometer makes this methodology feasible for routine clinical evaluations. We are encouraged to perform larger studies to further investigate the metrics' usefulness when quantifying levels of impairment

    Biomarker Discovery in Serum from Patients with Carotid Atherosclerosis

    Get PDF
    www.karger.com/cee This is an Open Access article licensed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License (www.karger.com/OA-license), applicable to the online version of the article only. Distribution for non-commercial purposes only

    Histological Evaluation of Corneal Scar Formation in Pseudophakic Bullous Keratopathy

    Get PDF
    PURPOSE: To evaluate histological changes in the corneal stroma in pseudophakic bullous keratopathy. METHODS: Twenty-eight patients (28 eyes) with pseudophakic bullous keratopathy underwent therapeutic penetrating keratoplasty at Shandong Eye Institute between January 2006 and November 2011. The patients were divided into two groups according to the duration of bullous keratopathy (<1.0 year group or >1.0 year group), and three buttons from enucleated eyes with choroidal melanoma served as a control. In vivo confocal microscopy examination, hematoxylin-eosin, Masson's trichrome stain and Van Gieson staining were used for microscopic examination. The histological evaluation and scoring of the buttons for morphological changes, including the degree of stromal scars, neovascularization and inflammatory cells within the corneal buttons, were compared. To study the underlying mechanism, connective tissue growth factor (CTGF) and TGF-β immunohistochemistry were performed. RESULTS: Confocal microscopy examination and histological evaluation and scoring of the buttons showed that compared with the <1.0 year group, stromal scars, neovascularization and inflammatory cells were more severe in the >1.0 year group (P<0.05). There was an increase in CTGF- and TGF-β1-positive stromal cells in the >1.0 year group. CONCLUSIONS: During the progression of pseudophakic bullous keratopathy, stromal scars occurred more often in the patients that had a longer duration of disease. Cytokines such as CTGF and TGF-β1 may play a role in this pathological process and deserve further investigation

    Is Body Fat a Predictor of Race Time in Female Long-Distance Inline Skaters?

    Get PDF
    Purpose: The aim of this study was to evaluate predictor variables of race time in female ultra-endurance inliners in the longest inline race in Europe. Methods: We investigated the association between anthropometric and training characteristics and race time for 16 female ultraendurance inline skaters, at the longest inline marathon in Europe, the ‘Inline One-eleven’ over 111 km in Switzerland, using bi- and multivariate analysis. Results: The mean (SD) race time was 289.7 (54.6) min. The bivariate analysis showed that body height (r=0.61), length of leg (r=0.61), number of weekly inline skating training sessions (r=-0.51)and duration of each training unit (r=0.61) were significantly correlated with race time. Stepwise multiple regressions revealed that body height, duration of each training unit, and age were the best variables to predict race time. Conclusion: Race time in ultra-endurance inline races such as the ‘Inline One-eleven’ over 111 km might be predicted by the following equation (r2 = 0.65): Race time (min) = -691.62 + 521.71 (body height, m) + 0.58 (duration of each training unit, min) + 1.78 (age, yrs) for female ultra-endurance inline skaters

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Crystalline TiO2 protective layer with graded oxygen defects for efficient and stable silicon-based photocathode

    Get PDF
    © 2018, The Author(s). The trade-offs between photoelectrode efficiency and stability significantly hinder the practical application of silicon-based photoelectrochemical devices. Here, we report a facile approach to decouple the trade-offs of silicon-based photocathodes by employing crystalline TiO2 with graded oxygen defects as protection layer. The crystalline protection layer provides high-density structure and enhances stability, and at the same time oxygen defects allow the carrier transport with low resistance as required for high efficiency. The silicon-based photocathode with black TiO2 shows a limiting current density of ~35.3 mA cm-2 and durability of over 100 h at 10 mA cm-2 in 1.0 M NaOH electrolyte, while none of photoelectrochemical behavior is observed in crystalline TiO2 protection layer. These findings have significant suggestions for further development of silicon-based, III–V compounds and other photoelectrodes and offer the possibility for achieving highly efficient and durable photoelectrochemical devices

    Elucidation of the ATP7B N-Domain Mg2+-ATP Coordination Site and Its Allosteric Regulation

    Get PDF
    The diagnostic of orphan genetic disease is often a puzzling task as less attention is paid to the elucidation of the pathophysiology of these rare disorders at the molecular level. We present here a multidisciplinary approach using molecular modeling tools and surface plasmonic resonance to study the function of the ATP7B protein, which is impaired in the Wilson disease. Experimentally validated in silico models allow the elucidation in the Nucleotide binding domain (N-domain) of the Mg2+-ATP coordination site and answer to the controversial role of the Mg2+ ion in the nucleotide binding process. The analysis of protein motions revealed a substantial effect on a long flexible loop branched to the N-domain protein core. We demonstrated the capacity of the loop to disrupt the interaction between Mg2+-ATP complex and the N-domain and propose a role for this loop in the allosteric regulation of the nucleotide binding process

    Heat shock partially dissociates the overlapping modules of the yeast protein-protein interaction network: a systems level model of adaptation

    Get PDF
    Network analysis became a powerful tool in recent years. Heat shock is a well-characterized model of cellular dynamics. S. cerevisiae is an appropriate model organism, since both its protein-protein interaction network (interactome) and stress response at the gene expression level have been well characterized. However, the analysis of the reorganization of the yeast interactome during stress has not been investigated yet. We calculated the changes of the interaction-weights of the yeast interactome from the changes of mRNA expression levels upon heat shock. The major finding of our study is that heat shock induced a significant decrease in both the overlaps and connections of yeast interactome modules. In agreement with this the weighted diameter of the yeast interactome had a 4.9-fold increase in heat shock. Several key proteins of the heat shock response became centers of heat shock-induced local communities, as well as bridges providing a residual connection of modules after heat shock. The observed changes resemble to a "stratus-cumulus" type transition of the interactome structure, since the unstressed yeast interactome had a globally connected organization, similar to that of stratus clouds, whereas the heat shocked interactome had a multifocal organization, similar to that of cumulus clouds. Our results showed that heat shock induces a partial disintegration of the global organization of the yeast interactome. This change may be rather general occurring in many types of stresses. Moreover, other complex systems, such as single proteins, social networks and ecosystems may also decrease their inter-modular links, thus develop more compact modules, and display a partial disintegration of their global structure in the initial phase of crisis. Thus, our work may provide a model of a general, system-level adaptation mechanism to environmental changes.Comment: 24 pages, 6 figures, 2 tables, 70 references + 22 pages 8 figures, 4 tables and 8 references in the enclosed Supplemen
    corecore