27 research outputs found
The effects of ethanol and aspalathus linearis on immortalized mouse brain endothelial cells (bEnd5)
Magister Scientiae (Medical Bioscience) - MSc(MBS)The blood brain barrier (BBB) is a signaling interface between the blood and the
central nervous system (CNS), which prohibits the entry of harmful blood-borne
substances into the brain micro-environment, thus maintaining brain homeostasis. The crucial role of the BBB is protecting the CNS, which may adversely be affected by alcohol. The central component of the BBB, endothelial cells (ECs), regulates BBB transport by regulating the permeability both transcellularly and through their
paracellular junctions, by structures called tight junctions (TJs) that are composed of proteins. The aim of this study was to investigate the in vitro effects of ethanol
(EtOH) and fermented rooibos (Rf) on a monolayer of bEnd5 mouse brain ECs, by
determining the effects of EtOH and Rf on bEnd5 (i) cell viability (ii) cell
proliferation (iii) rate of cell division (iv) cell toxicity (v) claudin-5 transcription (vi)
permeability across a monolayer of bEnd5 ECs and (vii) morphology, for a selected
experimental timeline of 24, 48, 72, and 96hrs. We then investigated if the
simultaneous exposure of Rf and EtOH could reverse or alleviate the EtOHinduced
effects on the bEnd5 ECs. EtOH metabolism induces oxidative stress and results in a range of adverse physiological effects. Aspathalus linearis (rooibos) contains many phenolic compounds, of which the main antioxidant activity is attributed to aspalathin. Our underlining hypothesis is that the antioxidants in an aqueous rooibos extract may therefore protect against the potential oxidant damaging effects of alcohol on the BBB. Cells were exposed for 24hrs to selected concentrations of EtOH (25mM and 100mM), a concentration of Rf containing equivalent of 1.9nM aspalathin, and the combinations of EtOH and Rf. Cell viability and cell toxicity was determined, while cell proliferation and rate of cell division was estimated using the trypan blue exclusion assay. Real time quantitative PCR was implemented to quantify claudin-5 transcription, normalized against housekeeping genes, GAPDH and HPRT. Transepithelial electrical resistance (TEER) was measured using the Ohm Millicell-electrical resistance system, while bEnd5 monolayer morphology was analysed using the Zeiss scanning electron microscope. Both concentrations of EtOH led to an overall decrease in cell viability, and a decreased number of live cells across 72hrs. Consistent with this, EtOH resulted in increased cell toxicity across the 96hr experimental timeframe and a diminished rate of cell division. The transcription of claudin-5 in bEnd5 ECs exposed to 25mM and 100mM EtOH varied dramatically across the 96hr timeframe. While 25mM EtOH resulted in an overall decrease in TEER, cells exposed to 100mM EtOH only decreased TEER between 48 and 96hrs. Morphologically, both concentrations of EtOH led to compromised paracellular spaces as endorsed by high definition SEM analysis. The administration of Rf on its own resulted in an initial decrease in viability, followed by recovery between 72 and 96hrs. Exposure to Rf diminished live cell numbers at 72 and 96hrs, accompanied by a compromised rate of cell division and an overall increase in cell toxicity. In addition, Rf down-regulated claudin-5 transcription across the course of the experiment, particularly between 24 and 48hrs. In alignment with this, Rf also led to an increase in BBB permeability from 24 to 96hrs. However, SEM studies were not able to discriminate any differences between control and Rf treated cells. Our study showed that the BBB could be protected against the adverse effects of EtOH, and this at the plasma concentration induced by 500mlâs of Rooibos tea. The simultaneous exposure of Rf and EtOH was able to negate the effects of EtOH on cell viability, cell proliferation, and cell toxicity but exacerbated the effects of EtOH on claudin-5 transcription and paracellular permeability. Morphologically, co-exposure with Rf only reversed the effects of 25mM EtOH while exacerbating the effects of 100mM EtOH at 96hrs. In conclusion, EtOH was shown to be detrimental to the integrity of bEnd5 ECs, and the
addition of a minuscule quantity of the Rf extract was able to partially alleviate
excess ROS-induced effects
The synergistic and neuroprotective effects of alcoholâantioxidant treatment on bloodâbrain barrier endothelial cells
Background: Alcohol (EtOH) is reported to adversely affect one of the most crucial roles of the bloodâbrain barrier (BBB), the regulation of its permeability, thereby compromising the stability of the homeostatic environment of the brain. The central component of the BBB, endothelial cells (ECs), regulates BBB transcellular transport, while their paracellular pathways are made virtually impermeable by molecular structures called tight junctions (TJs). These TJs are composed of proteins, such as claudin-5, a protein involved in the regulation of paracellular permeability and of key interest in this study. Methods and Results: The working hypothesis of this study postulated that the high levels of antioxidants (AOs) in the fermented Aspalathus linearis (Rooibos; Rf) tincture may protect the ECs of the BBB against oxidative stress induced by EtOH exposure. Cells were exposed for 24 hours to selected concentrations of EtOH (25 and 100 mM), Rf (containing an antioxidant equivalence of 1.9 nM Aspalathin), and cotreatments of EtOH and Rf. Cell viability, live cell number, and toxicity were analyzed using the trypan blue exclusion assay. RT-qPCR was implemented to quantify claudin-5 transcription. In addition, permeability (Transepithelial Electrical Resistance) of bEnd5 monolayers was measured. The experimental timeline for the above-mentioned parameters was 24 and 48 hours. Conclusions: Our study showed that simultaneous exposure of Rf and EtOH was able to negate the effects of EtOH on cell viability and cell proliferation, but was not able to reverse or reduce the effects of EtOH on claudin-5 transcription and paracellular permeability. Furthermore, a novel finding in this study suggests that very low concentrations of AOs in tinctures such as Rooibos tea could profoundly alter the redox status of brain ECs
Emerging Themes and Future Directions of Multi-Sector Nexus Research and Implementation
Water, energy, and food are all essential components of human societies. Collectively, their respective resource systems are interconnected in what is called the ânexusâ. There is growing consensus that a holistic understanding of the interdependencies and trade-offs between these sectors and other related systems is critical to solving many of the global challenges they present. While nexus research has grown exponentially since 2011, there is no unified, overarching approach, and the implementation of concepts remains hampered by the lack of clear case studies. Here, we present the results of a collaborative thought exercise involving 75 scientists and summarize them into 10 key recommendations covering: the most critical nexus issues of today, emerging themes, and where future efforts should be directed. We conclude that a nexus community of practice to promote open communication among researchers, to maintain and share standardized datasets, and to develop applied case studies will facilitate transparent comparisons of models and encourage the adoption of nexus approaches in practice
Altimetry for the future: Building on 25 years of progress
In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ââGreenâ Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instrumentsâ development and satellite missionsâ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion
Recommended from our members
Effect of Hydrocortisone on Mortality and Organ Support in Patients With Severe COVID-19: The REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial.
Importance: Evidence regarding corticosteroid use for severe coronavirus disease 2019 (COVID-19) is limited. Objective: To determine whether hydrocortisone improves outcome for patients with severe COVID-19. Design, Setting, and Participants: An ongoing adaptive platform trial testing multiple interventions within multiple therapeutic domains, for example, antiviral agents, corticosteroids, or immunoglobulin. Between March 9 and June 17, 2020, 614 adult patients with suspected or confirmed COVID-19 were enrolled and randomized within at least 1 domain following admission to an intensive care unit (ICU) for respiratory or cardiovascular organ support at 121 sites in 8 countries. Of these, 403 were randomized to open-label interventions within the corticosteroid domain. The domain was halted after results from another trial were released. Follow-up ended August 12, 2020. Interventions: The corticosteroid domain randomized participants to a fixed 7-day course of intravenous hydrocortisone (50 mg or 100 mg every 6 hours) (nâ=â143), a shock-dependent course (50 mg every 6 hours when shock was clinically evident) (nâ=â152), or no hydrocortisone (nâ=â108). Main Outcomes and Measures: The primary end point was organ support-free days (days alive and free of ICU-based respiratory or cardiovascular support) within 21 days, where patients who died were assigned -1 day. The primary analysis was a bayesian cumulative logistic model that included all patients enrolled with severe COVID-19, adjusting for age, sex, site, region, time, assignment to interventions within other domains, and domain and intervention eligibility. Superiority was defined as the posterior probability of an odds ratio greater than 1 (threshold for trial conclusion of superiority >99%). Results: After excluding 19 participants who withdrew consent, there were 384 patients (mean age, 60 years; 29% female) randomized to the fixed-dose (nâ=â137), shock-dependent (nâ=â146), and no (nâ=â101) hydrocortisone groups; 379 (99%) completed the study and were included in the analysis. The mean age for the 3 groups ranged between 59.5 and 60.4 years; most patients were male (range, 70.6%-71.5%); mean body mass index ranged between 29.7 and 30.9; and patients receiving mechanical ventilation ranged between 50.0% and 63.5%. For the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively, the median organ support-free days were 0 (IQR, -1 to 15), 0 (IQR, -1 to 13), and 0 (-1 to 11) days (composed of 30%, 26%, and 33% mortality rates and 11.5, 9.5, and 6 median organ support-free days among survivors). The median adjusted odds ratio and bayesian probability of superiority were 1.43 (95% credible interval, 0.91-2.27) and 93% for fixed-dose hydrocortisone, respectively, and were 1.22 (95% credible interval, 0.76-1.94) and 80% for shock-dependent hydrocortisone compared with no hydrocortisone. Serious adverse events were reported in 4 (3%), 5 (3%), and 1 (1%) patients in the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively. Conclusions and Relevance: Among patients with severe COVID-19, treatment with a 7-day fixed-dose course of hydrocortisone or shock-dependent dosing of hydrocortisone, compared with no hydrocortisone, resulted in 93% and 80% probabilities of superiority with regard to the odds of improvement in organ support-free days within 21 days. However, the trial was stopped early and no treatment strategy met prespecified criteria for statistical superiority, precluding definitive conclusions. Trial Registration: ClinicalTrials.gov Identifier: NCT02735707
Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults
Background Underweight and obesity are associated with adverse health outcomes throughout the life course. We
estimated the individual and combined prevalence of underweight or thinness and obesity, and their changes, from
1990 to 2022 for adults and school-aged children and adolescents in 200 countries and territories.
Methods We used data from 3663 population-based studies with 222 million participants that measured height and
weight in representative samples of the general population. We used a Bayesian hierarchical model to estimate
trends in the prevalence of different BMI categories, separately for adults (age â„20 years) and school-aged children
and adolescents (age 5â19 years), from 1990 to 2022 for 200 countries and territories. For adults, we report the
individual and combined prevalence of underweight (BMI <18·5 kg/m2) and obesity (BMI â„30 kg/m2). For schoolaged children and adolescents, we report thinness (BMI <2 SD below the median of the WHO growth reference)
and obesity (BMI >2 SD above the median).
Findings From 1990 to 2022, the combined prevalence of underweight and obesity in adults decreased in
11 countries (6%) for women and 17 (9%) for men with a posterior probability of at least 0·80 that the observed
changes were true decreases. The combined prevalence increased in 162 countries (81%) for women and
140 countries (70%) for men with a posterior probability of at least 0·80. In 2022, the combined prevalence of
underweight and obesity was highest in island nations in the Caribbean and Polynesia and Micronesia, and
countries in the Middle East and north Africa. Obesity prevalence was higher than underweight with posterior
probability of at least 0·80 in 177 countries (89%) for women and 145 (73%) for men in 2022, whereas the converse
was true in 16 countries (8%) for women, and 39 (20%) for men. From 1990 to 2022, the combined prevalence of
thinness and obesity decreased among girls in five countries (3%) and among boys in 15 countries (8%) with a
posterior probability of at least 0·80, and increased among girls in 140 countries (70%) and boys in 137 countries (69%)
with a posterior probability of at least 0·80. The countries with highest combined prevalence of thinness and
obesity in school-aged children and adolescents in 2022 were in Polynesia and Micronesia and the Caribbean for
both sexes, and Chile and Qatar for boys. Combined prevalence was also high in some countries in south Asia, such
as India and Pakistan, where thinness remained prevalent despite having declined. In 2022, obesity in school-aged
children and adolescents was more prevalent than thinness with a posterior probability of at least 0·80 among girls
in 133 countries (67%) and boys in 125 countries (63%), whereas the converse was true in 35 countries (18%) and
42 countries (21%), respectively. In almost all countries for both adults and school-aged children and adolescents,
the increases in double burden were driven by increases in obesity, and decreases in double burden by declining
underweight or thinness.
Interpretation The combined burden of underweight and obesity has increased in most countries, driven by an
increase in obesity, while underweight and thinness remain prevalent in south Asia and parts of Africa. A healthy
nutrition transition that enhances access to nutritious foods is needed to address the remaining burden of
underweight while curbing and reversing the increase in obesit
Emerging Themes and Future Directions of Multi-Sector Nexus Research and Implementation
Water, energy, and food are all essential components of human societies. Collectively, their respective resource systems are interconnected in what is called the ânexusâ. There is growing consensus that a holistic understanding of the interdependencies and trade-offs between these sectors and other related systems is critical to solving many of the global challenges they present. While nexus research has grown exponentially since 2011, there is no unified, overarching approach, and the implementation of concepts remains hampered by the lack of clear case studies. Here, we present the results of a collaborative thought exercise involving 75 scientists and summarize them into 10 key recommendations covering: the most critical nexus issues of today, emerging themes, and where future efforts should be directed. We conclude that a nexus community of practice to promote open communication among researchers, to maintain and share standardized datasets, and to develop applied case studies will facilitate transparent comparisons of models and encourage the adoption of nexus approaches in practice
Immune boosting by B.1.1.529 (Omicron) depends on previous SARS-CoV-2 exposure
The Omicron, or Pango lineage B.1.1.529, variant of SARS-CoV-2 carries multiple spike mutations with high transmissibility and partial neutralizing antibody (nAb) escape. Vaccinated individuals show protection from severe disease, often attributed to primed cellular immunity. We investigated T and B cell immunity against B.1.1.529 in triple mRNA vaccinated healthcare workers (HCW) with different SARS-CoV-2 infection histories. B and T cell immunity against previous variants of concern was enhanced in triple vaccinated individuals, but magnitude of T and B cell responses against B.1.1.529 spike protein was reduced. Immune imprinting by infection with the earlier B.1.1.7 (Alpha) variant resulted in less durable binding antibody against B.1.1.529. Previously infection-naĂŻve HCW who became infected during the B.1.1.529 wave showed enhanced immunity against earlier variants, but reduced nAb potency and T cell responses against B.1.1.529 itself. Previous Wuhan Hu-1 infection abrogated T cell recognition and any enhanced cross-reactive neutralizing immunity on infection with B.1.1.529
Quantitative, multiplexed, targeted proteomics for ascertaining variant specific SARS-CoV-2 antibody response
Determining the protection an individual has to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants of concern (VoCs) is crucial for future immune surveillance, vaccine development, and understanding of the changing immune response. We devised an informative assay to current ELISA-based serology using multiplexed, baited, targeted proteomics for direct detection of multiple proteins in the SARS-CoV-2 anti-spike antibody immunocomplex. Serum from individuals collected after infection or first- and second-dose vaccination demonstrates this approach and shows concordance with existing serology and neutralization. Our assays show altered responses of both immunoglobulins and complement to the Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.1) VoCs and a reduced response to Omicron (B1.1.1529). We were able to identify individuals who had prior infection, and observed that C1q is closely associated with IgG1 (r > 0.82) and may better reflect neutralization to VoCs. Analyzing additional immunoproteins beyond immunoglobulin (Ig) G, provides important information about our understanding of the response to infection and vaccination
Altimetry for the future: building on 25 years of progress
In 2018 we celebrated 25âŻyears of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology.
The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the âGreenâ Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instrumentsâ development and satellite missionsâ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion