456 research outputs found
Ceramic and coating applications in the hostile environment of a high temperature hypersonic wind tunnel
A Mach 7, blowdown wind tunnel was used to investigate aerothermal structural phenomena on large to full scale high speed vehicle components. The high energy test medium, which provided a true temperature simulation of hypersonic flow at 24 to 40 km altitude, was generated by the combustion of methane with air at high pressures. Since the wind tunnel, as well as the models, must be protected from thermally induced damage, ceramics and coatings were used extensively. Coatings were used both to protect various wind tunnel components and to improve the quality of the test stream. Planned modifications for the wind tunnel included more extensive use of ceramics in order to minimize the number of active cooling systems and thus minimize the inherent operational unreliability and cost that accompanies such systems. Use of nonintrusive data acquisition techniques, such as infrared radiometry, allowed more widespread use of ceramics for models to be tested in high energy wind tunnels
On the flow map for 2D Euler equations with unbounded vorticity
In Part I, we construct a class of examples of initial velocities for which
the unique solution to the Euler equations in the plane has an associated flow
map that lies in no Holder space of positive exponent for any positive time. In
Part II, we explore inverse problems that arise in attempting to construct an
example of an initial velocity producing an arbitrarily poor modulus of
continuity of the flow map.Comment: http://iopscience.iop.org/0951-7715/24/9/013/ for published versio
Performance of a Borehole X-ray Fluorescence Spectrometer for Planetary Exploration
We have designed and constructed a borehole X-ray Fluorescence Spectrometer (XRFS) as part of the Mars Subsurface Access program [1]. It can be used to determine the composition of the Mars regolith at various depths by insertion into a pre-drilled borehole. The primary requirements and performance metrics for the instrument are to obtain parts-per-million (ppm) lower limits of detection over a wide range of elements in the periodic table (Magnesium to Lead). Power consumption during data collection was also measured. The prototype instrument is complete and preliminary testing has been performed. Terrestrial soil Standard Reference Materials were used as the test samples. Detection limits were about 10 weight ppm for most elements, with light elements being higher, up to 1.4 weight percent for magnesium. Power consumption (excluding ground support components) was 12 watts
Viscous-Inviscid Interactions in a Boundary-Layer Flow Induced by a Vortex Array
In this paper we investigate the asymptotic validity of boundary layer
theory. For a flow induced by a periodic row of point-vortices, we compare
Prandtl's solution to Navier-Stokes solutions at different numbers. We
show how Prandtl's solution develops a finite time separation singularity. On
the other hand Navier-Stokes solution is characterized by the presence of two
kinds of viscous-inviscid interactions between the boundary layer and the outer
flow. These interactions can be detected by the analysis of the enstrophy and
of the pressure gradient on the wall. Moreover we apply the complex singularity
tracking method to Prandtl and Navier-Stokes solutions and analyze the previous
interactions from a different perspective
A Kato type Theorem for the inviscid limit of the Navier-Stokes equations with a moving rigid body
The issue of the inviscid limit for the incompressible Navier-Stokes
equations when a no-slip condition is prescribed on the boundary is a famous
open problem. A result by Tosio Kato says that convergence to the Euler
equations holds true in the energy space if and only if the energy dissipation
rate of the viscous flow in a boundary layer of width proportional to the
viscosity vanishes. Of course, if one considers the motion of a solid body in
an incompressible fluid, with a no-slip condition at the interface, the issue
of the inviscid limit is as least as difficult. However it is not clear if the
additional difficulties linked to the body's dynamic make this issue more
difficult or not. In this paper we consider the motion of a rigid body in an
incompressible fluid occupying the complementary set in the space and we prove
that a Kato type condition implies the convergence of the fluid velocity and of
the body velocity as well, what seems to indicate that an answer in the case of
a fixed boundary could also bring an answer to the case where there is a moving
body in the fluid
The Inviscid Limit and Boundary Layers for Navier-Stokes Flows
The validity of the vanishing viscosity limit, that is, whether solutions of
the Navier-Stokes equations modeling viscous incompressible flows converge to
solutions of the Euler equations modeling inviscid incompressible flows as
viscosity approaches zero, is one of the most fundamental issues in
mathematical fluid mechanics. The problem is classified into two categories:
the case when the physical boundary is absent, and the case when the physical
boundary is present and the effect of the boundary layer becomes significant.
The aim of this article is to review recent progress on the mathematical
analysis of this problem in each category.Comment: To appear in "Handbook of Mathematical Analysis in Mechanics of
Viscous Fluids", Y. Giga and A. Novotn\'y Ed., Springer. The final
publication is available at http://www.springerlink.co
Interim Design Report
The International Design Study for the Neutrino Factory (the IDS-NF) was
established by the community at the ninth "International Workshop on Neutrino
Factories, super-beams, and beta- beams" which was held in Okayama in August
2007. The IDS-NF mandate is to deliver the Reference Design Report (RDR) for
the facility on the timescale of 2012/13. In addition, the mandate for the
study [3] requires an Interim Design Report to be delivered midway through the
project as a step on the way to the RDR. This document, the IDR, has two
functions: it marks the point in the IDS-NF at which the emphasis turns to the
engineering studies required to deliver the RDR and it documents baseline
concepts for the accelerator complex, the neutrino detectors, and the
instrumentation systems. The IDS-NF is, in essence, a site-independent study.
Example sites, CERN, FNAL, and RAL, have been identified to allow site-specific
issues to be addressed in the cost analysis that will be presented in the RDR.
The choice of example sites should not be interpreted as implying a preferred
choice of site for the facility
High intensity neutrino oscillation facilities in Europe
The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ+ and μ− beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular He6 and Ne18, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive
- …