1,327 research outputs found
HIF- and Non-HIF-Regulated Hypoxic Responses Require the Estrogen-Related Receptor in Drosophila melanogaster
Low-oxygen tolerance is supported by an adaptive response that includes a coordinate shift in metabolism and the activation of a transcriptional program that is driven by the hypoxia-inducible factor (HIF) pathway. The precise contribution of HIF-1a in the adaptive response, however, has not been determined. Here, we investigate how HIF influences hypoxic adaptation throughout Drosophila melanogaster development. We find that hypoxic-induced transcriptional changes are comprised of HIF-dependent and HIF-independent pathways that are distinct and separable. We show that normoxic set-points of carbohydrate metabolites are significantly altered in sima mutants and that these animals are unable to mobilize glycogen in hypoxia. Furthermore, we find that the estrogen-related receptor (dERR), which is a global regulator of aerobic glycolysis in larvae, is required for a competent hypoxic response. dERR binds to dHIFa and participates in the HIF-dependent transcriptional program in hypoxia. In addition, dERR acts in the absence of dHIFa in hypoxia and a significant portion of HIF-independent transcriptional responses can be attributed to dERR actions, including upregulation of glycolytic transcripts. These results indicate that competent hypoxic responses arise from complex interactions between HIF-dependent and -independent mechanisms, and that dERR plays a central role in both of these programs
Uncovering hidden geographies and socio-economic influences on fuel poverty using household fuel spend data: a meso-scale study in Scotland
Revision rates after primary hip and knee replacement in England between 2003 and 2006
<b>Background</b>:
Hip and knee replacement are some of the most frequently performed surgical procedures in the world. Resurfacing of the hip and unicondylar knee replacement are increasingly being used. There is relatively little evidence on their performance. To study performance of joint replacement in England, we investigated revision rates in the first 3 y after hip or knee replacement according to prosthesis type.
<b>Methods and Findings</b>:
We linked records of the National Joint Registry for England and Wales and the Hospital Episode Statistics for patients with a primary hip or knee replacement in the National Health Service in England between April 2003 and September 2006. Hospital Episode Statistics records of succeeding admissions were used to identify revisions for any reason. 76,576 patients with a primary hip replacement and 80,697 with a primary knee replacement were included (51% of all primary hip and knee replacements done in the English National Health Service). In hip patients, 3-y revision rates were 0.9% (95% confidence interval [CI] 0.8%–1.1%) with cemented, 2.0% (1.7%–2.3%) with cementless, 1.5% (1.1%–2.0% CI) with “hybrid” prostheses, and 2.6% (2.1%–3.1%) with hip resurfacing (p < 0.0001). Revision rates after hip resurfacing were increased especially in women. In knee patients, 3-y revision rates were 1.4% (1.2%–1.5% CI) with cemented, 1.5% (1.1%–2.1% CI) with cementless, and 2.8% (1.8%–4.5% CI) with unicondylar prostheses (p < 0.0001). Revision rates after knee replacement strongly decreased with age.
<b>Interpretation</b>:
Overall, about one in 75 patients needed a revision of their prosthesis within 3 y. On the basis of our data, consideration should be given to using hip resurfacing only in male patients and unicondylar knee replacement only in elderly patients
High-fidelity single-shot singlet-triplet readout of precision-placed donors in silicon
In this work we perform direct single-shot readout of the singlet-triplet states in exchange coupled electrons confined to precision-placed donor atoms in silicon. Our method takes advantage of the large energy splitting given by the Pauli-spin blockaded (2,0) triplet states, from which we can achieve a single-shot readout fidelity of 98.4 ± 0.2%. We measure the triplet-minus relaxation time to be of the order 3 s at 2.5 T and observe its predicted decrease as a function of magnetic field, reaching 0.5 s at 1 T
A global map to aid the identification and screening of critical habitat for marine industries
Marine industries face a number of risks that necessitate careful analysis prior to making decisions on the siting of operations and facilities. An important emerging regulatory framework on environmental sustainability for business operations is the International Finance Corporation’s Performance Standard 6 (IFC PS6). Within PS6, identification of biodiversity significance is articulated through the concept of “Critical Habitat”, a definition developed by the IFC and detailed through criteria aligned with those that support internationally accepted biodiversity designations. No publicly available tools have been developed in either the marine or terrestrial realm to assess the likelihood of sites or operations being located within PS6-defined Critical Habitat. This paper presents a starting point towards filling this gap in the form of a preliminary global map that classifies more than 13 million km2 of marine and coastal areas of importance for biodiversity (protected areas, Key Biodiversity Areas [KBA], sea turtle nesting sites, cold- and warm-water corals, seamounts, seagrass beds, mangroves, saltmarshes, hydrothermal vents and cold seeps) based on their overlap with Critical Habitat criteria, as defined by IFC. In total, 5798×103 km2 (1.6%) of the analysis area (global ocean plus coastal land strip) were classed as Likely Critical Habitat, and 7526×103 km2 (2.1%) as Potential Critical Habitat; the remainder (96.3%) were Unclassified. The latter was primarily due to the paucity of biodiversity data in marine areas beyond national jurisdiction and/or in deep waters, and the comparatively fewer protected areas and KBAs in these regions. Globally, protected areas constituted 65.9% of the combined Likely and Potential Critical Habitat extent, and KBAs 29.3%, not accounting for the overlap between these two features. Relative Critical Habitat extent in Exclusive Economic Zones varied dramatically between countries. This work is likely to be of particular use for industries operating in the marine and coastal realms as an early screening aid prior to in situ Critical Habitat assessment; to financial institutions making investment decisions; and to those wishing to implement good practice policies relevant to biodiversity management. Supplementary material (available online) includes other global datasets considered, documentation and justification of biodiversity feature classification, detail of IFC PS6 criteria/scenarios, and coverage calculations
The Samurai Project: verifying the consistency of black-hole-binary waveforms for gravitational-wave detection
We quantify the consistency of numerical-relativity black-hole-binary
waveforms for use in gravitational-wave (GW) searches with current and planned
ground-based detectors. We compare previously published results for the
mode of the gravitational waves from an equal-mass
nonspinning binary, calculated by five numerical codes. We focus on the 1000M
(about six orbits, or 12 GW cycles) before the peak of the GW amplitude and the
subsequent ringdown. We find that the phase and amplitude agree within each
code's uncertainty estimates. The mismatch between the modes
is better than for binary masses above with respect to
the Enhanced LIGO detector noise curve, and for masses above
with respect to Advanced LIGO, Virgo and Advanced Virgo. Between the waveforms
with the best agreement, the mismatch is below . We find that
the waveforms would be indistinguishable in all ground-based detectors (and for
the masses we consider) if detected with a signal-to-noise ratio of less than
, or less than in the best cases.Comment: 17 pages, 9 figures. Version accepted by PR
TIA1 Mutations in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Promote Phase Separation and Alter Stress Granule Dynamics.
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are age-related neurodegenerative disorders with shared genetic etiologies and overlapping clinical and pathological features. Here we studied a novel ALS/FTD family and identified the P362L mutation in the low-complexity domain (LCD) of T cell-restricted intracellular antigen-1 (TIA1). Subsequent genetic association analyses showed an increased burden of TIA1 LCD mutations in ALS patients compared to controls (p = 8.7 × 1
The Mock LISA Data Challenges: from Challenge 3 to Challenge 4
The Mock LISA Data Challenges are a program to demonstrate LISA data-analysis
capabilities and to encourage their development. Each round of challenges
consists of one or more datasets containing simulated instrument noise and
gravitational waves from sources of undisclosed parameters. Participants
analyze the datasets and report best-fit solutions for the source parameters.
Here we present the results of the third challenge, issued in Apr 2008, which
demonstrated the positive recovery of signals from chirping Galactic binaries,
from spinning supermassive--black-hole binaries (with optimal SNRs between ~ 10
and 2000), from simultaneous extreme-mass-ratio inspirals (SNRs of 10-50), from
cosmic-string-cusp bursts (SNRs of 10-100), and from a relatively loud
isotropic background with Omega_gw(f) ~ 10^-11, slightly below the LISA
instrument noise.Comment: 12 pages, 2 figures, proceedings of the 8th Edoardo Amaldi Conference
on Gravitational Waves, New York, June 21-26, 200
Nanofabrication by magnetic focusing of supersonic beams
We present a new method for nanoscale atom lithography. We propose the use of
a supersonic atomic beam, which provides an extremely high-brightness and cold
source of fast atoms. The atoms are to be focused onto a substrate using a thin
magnetic film, into which apertures with widths on the order of 100 nm have
been etched. Focused spot sizes near or below 10 nm, with focal lengths on the
order of 10 microns, are predicted. This scheme is applicable both to precision
patterning of surfaces with metastable atomic beams and to direct deposition of
material.Comment: 4 pages, 3 figure
Application of BRET to monitor ligand binding to GPCRs
Bioluminescence resonance energy transfer (BRET) is a well-established method for investigating protein-protein interactions. Here we present a BRET approach to monitor ligand binding to G protein–coupled receptors (GPCRs) on the surface of living cells made possible by the use of fluorescent ligands in combination with a bioluminescent protein (NanoLuc) that can be readily expressed on the N terminus of GPCRs
- …
