61 research outputs found

    Decreased natural organic matter in water distribution decreases nitrite formation in non-disinfected conditions, via enhanced nitrite oxidation

    Get PDF
    Nitrite in drinking water is a potentially harmful substance for humans, and controlling nitrite formation in drinking water distribution systems (DWDSs) is highly important. The effect of natural organic matter (NOM) on the formation of nitrite in simulated distribution systems was studied. The objective was to inspect how a reduced NOM concentration affected nitrite development via nitrification, separated from the effects of disinfection. We observed that nitrite formation was noticeably sensitive to the changes in the NOM concentrations. Nitrite declined with reduced NOM (TOC 1.0 mg L-1) but increased with the normal NOM concentration of tap water (TOC 1.6 mg L-1). Ammonium oxidation was not altered by the reduced NOM, however, nitrite oxidation was enhanced significantly according to the pseudo-first order reaction rate model interpretation. The enhanced nitrite oxidation was observed with both ammonium and nitrite as the initial nitrogen source. The theoretical maximum nitrite concentrations were higher with the normal concentration of NOM than with reduced NOM. The results suggest that the role of nitrite oxidation may be quite important in nitrite formation in DWDSs and worth further studies. As a practical result, our study supported enhanced NOM removal in non-disinfected DWDSs.Maa- ja vesitekniikan tuki ry. 33297 35211 39066

    An overview on the reactors to study drinking water biofilms

    Get PDF
    The development of biofilms in drinking water distribution systems (DWDS) can cause pipe degradation, changes in the water organoleptic properties but the main problem is related to the public health. Biofilms are the main responsible for the microbial presence in drinking water (DW) and can be reservoirs for pathogens. Therefore, the understanding of the mechanisms underlying biofilm formation and behavior is of utmost importance in order to create effective control strategies. As the study of biofilms in real DWDS is difficult, several devices have been developed. These devices allow biofilm formation under controlled conditions of physical (flow velocity, shear stress, temperature, type of pipe material, etc), chemical (type and amount of nutrients, type of disinfectant and residuals, organic and inorganic particles, ions, etc) and biological (composition of microbial community e type of microorganism and characteristics) parameters, ensuring that the operational conditions are similar as possible to the DWDS conditions in order to achieve results that can be applied to the real scenarios. The devices used in DW biofilm studies can be divided essentially in two groups, those usually applied in situ and the bench top laboratorial reactors. The selection of a device should be obviously in accordance with the aim of the study and its advantages and limitations should be evaluated to obtain reproducible results that can be transposed into the reality of the DWDS. The aim of this review is to provide an overview on the main reactors used in DW biofilm studies, describing their characteristics and applications, taking into account their main advantages and limitations.This work was supported by the Operational Programme for Competitiveness Factors COMPETE and by Portuguese Foundation for Science and Technology through Project Phyto disinfectants - PTDC/DTPSAP/1078/2012 (COMPETE: FCOMP-01-0124-FEDER-028765), the Post-Doc grant awarded to Lucia Simoes (SFRH/BPD/81982/2011). Also, this work was undertaken as part of the European Research Project SUS-CLEAN (Contract n_FP7-KBBE-2011-5, project number: 287514) and the COST Action FA1202. The authors are solely responsible for this work. It does not represent the opinion of the Community, and the Community is not responsible for any use that might be made of data appearing herein

    Surface modifications for antimicrobial effects in the healthcare setting: a critical overview

    Get PDF
    The spread of infections in healthcare environments is a persistent and growing problem in most countries, aggravated by the development of microbial resistance to antibiotics and disinfectants. In addition to indwelling medical devices (e.g. implants, catheters), such infections may also result from adhesion of microbes either to external solid–water interfaces such as shower caps, taps, drains, etc., or to external solid–gas interfaces such as door handles, clothes, curtains, computer keyboards, etc. The latter are the main focus of the present work, where an overview of antimicrobial coatings for such applications is presented. This review addresses well-established and novel methodologies, including chemical and physical functional modification of surfaces to reduce microbial contamination, as well as the potential risks associated with the implementation of such anticontamination measures. Different chemistry-based approaches are discussed, for instance anti-adhesive surfaces (e.g. superhydrophobic, zwitterions), contact-killing surfaces (e.g. polymer brushes, phages), and biocide-releasing surfaces (e.g. triggered release, quorum sensing-based systems). The review also assesses the impact of topographical modifications at distinct dimensions (micrometre and nanometre orders of magnitude) and the importance of applying safe-by-design criteria (e.g. toxicity, contribution for unwanted acquisition of antimicrobial resistance, long-term stability) when developing and implementing antimicrobial surfaces

    SAMKin ja Rauman Akateemisten Naisten ’’pöpöinen’’ lukuhetki

    No full text

    Production guide for small port safety videos

    Get PDF

    Arjen valinnoilla puhtaampi Itämeri

    No full text
    • …
    corecore