29 research outputs found

    Characteristics and outcomes of hospitalised adults with COVID-19 in a Global Health Research Network: A cohort study

    Get PDF
    Objective To examine age, gender, and temporal differences in baseline characteristics and clinical outcomes of adult patients hospitalised with COVID-19. Design A cohort study using deidentified electronic medical records from a Global Research Network. Setting/Participants 67 456 adult patients hospitalised with COVID-19 from the USA; 7306 from Europe, Latin America and Asia-Pacific between February 2020 and January 2021. Results In the US cohort, compared with patients 18-34 years old, patients ≥65 had a greater risk of intensive care unit (ICU) admission (adjusted HR (aHR) 1.73, 95% CI 1.58 to 1.90), acute respiratory distress syndrome(ARDS)/respiratory failure (aHR 1.86, 95% CI 1.76 to 1.96), invasive mechanical ventilation (IMV, aHR 1.93, 95% CI, 1.73 to 2.15), and all-cause mortality (aHR 5.6, 95% CI 4.36 to 7.18). Men appeared to be at a greater risk for ICU admission (aHR 1.34, 95% CI 1.29 to 1.39), ARDS/respiratory failure (aHR 1.24, 95% CI1.21 to 1.27), IMV (aHR 1.38, 95% CI 1.32 to 1.45), and all-cause mortality (aHR 1.16, 95% CI 1.08 to 1.24) compared with women. Moreover, we observed a greater risk of adverse outcomes during the early pandemic (ie, February-April 2020) compared with later periods. In the ex-US cohort, the age and gender trends were similar; for the temporal trend, the highest proportion of patients with all-cause mortality were also in February-April 2020; however, the highest percentages of patients with IMV and ARDS/respiratory failure were in August-October 2020 followed by February-April 2020. Conclusions This study provided valuable information on the temporal trends of characteristics and outcomes of hospitalised adult COVID-19 patients in both USA and ex-USA. It also described the population at a potentially greater risk for worse clinical outcomes by identifying the age and gender differences. Together, the information could inform the prevention and treatment strategies of COVID-19. Furthermore, it can be used to raise public awareness of COVID-19's impact on vulnerable populations

    Glycemic control during consecutive days with prolonged walking exercise in individuals with type 1 diabetes mellitus

    Get PDF
    Aims: Despite its general benefits for health, exercise complicates the maintenance of stable blood glucose concentrations in individuals with type 1 diabetes. The aim of the current study was to examine changes in food intake, insulin administration, and 24-h glycemic control in response to consecutive days with prolonged walking exercise (~8 h daily) in individuals with type 1 diabetes. Methods: Ten individuals with type 1 diabetes participating in the worlds' largest walking event were recruited for this observational study. Simultaneous measurements of 24-h glycemic control (continuous glucose monitoring), insulin administration and food intake were performed during a non-walking day (control) and during three subsequent days with prolonged walking exercise (daily distance 40 or 50 km). Results: Despite an increase in daily energy (31 ± 18%; p 10 mmol/L) and hypoglycemia (blood glucose 0.05 for all variables). The prolonged walking exercise was associated with a modest increase in glycemic variability compared with the control day (p < 0.05). Conclusion: Prolonged walking exercise allows for profound reductions in daily insulin administration in persons with type 1 diabetes, despite large increments in energy and carbohydrate intake. When taking such adjustments into account, prolonged moderate-intensity exercise does not necessarily impair 24-h glycemic control. © 2016 Elsevier Ireland Ltd

    Trends in characteristics and outcomes among US adults hospitalised with COVID-19 throughout 2020: An observational cohort study

    Get PDF
    Objectives To examine the temporal patterns of patient characteristics, treatments used and outcomes associated with COVID-19 in patients who were hospitalised for the disease between January and 15 November 2020. Design Observational cohort study. Setting COVID-19 subset of the Optum deidentified electronic health records, including more than 1.8 million patients from across the USA. Participants There were 51 510 hospitalised patients who met the COVID-19 definition, with 37 617 in the laboratory positive cohort and 13 893 in the clinical cohort. Primary and secondary outcome measures Incident acute clinical outcomes, including in-hospital all-cause mortality. Results Respectively, 48% and 49% of the laboratory positive and clinical cohorts were women. The 50- 65 age group was the median age group for both cohorts. The use of antivirals and dexamethasone increased over time, fivefold and twofold, respectively, while the use of hydroxychloroquine declined by 98%. Among adult patients in the laboratory positive cohort, absolute age/sex standardised incidence proportion for in-hospital death changed by -0.036 per month (95% CI -0.042 to -0.031) from March to June 2020, but remained fairly flat from June to November, 2020 (0.001 (95% CI -0.001 to 0.003), 17.5% (660 deaths /3986 persons) in March and 10.2% (580/5137) in October); in the clinical cohort, the corresponding changes were -0.024 (95% CI -0.032 to -0.015) and 0.011 (95% CI 0.007 0.014), respectively (14.8% (175/1252) in March, 15.3% (189/1203) in October). Declines in the cumulative incidence of most acute clinical outcomes were observed in the laboratory positive cohort, but not for the clinical cohort. Conclusion The incidence of adverse clinical outcomes remains high among COVID-19 patients with clinical diagnosis only. Patients with COVID-19 entering the hospital are at elevated risk of adverse outcomes

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore