25 research outputs found

    Implantable pneumatically actuated microsystem for renal pressure-mediated transfection in mice.

    Get PDF
    In vivo transfection is an important technique used in biological research and drug therapy development. Previously, we developed a renal pressure-mediated transfection method performed by pressing a kidney after an intravenous injection of naked nucleic acids. Although this is a useful method because of its safety and wide range of applications, an innovative approach for performing this method without repeatedly cutting open the abdomen is required. In this study, we developed an implantable microsystem fabricated by Micro-Electro-Mechanical Systems (MEMS) technologies for renal pressure-mediated transfection. The system consists of a polydimethylsiloxane pneumatic balloon actuator (PBA) used as an actuator to press the target kidney. The PBA of the implanted microsystem can be actuated without opening the abdomen by applying air pressure from outside the body to the pressure-supplying port via a needle. We successfully performed renal pressure-mediated transfection using the newly developed system when the implanted system was activated at 60kPa for 10s. This is the first report of an implantable MEMS-based microsystem that demonstrates in vivo transfection to a kidney using naked plasmid DNA

    TbGT8 is a bifunctional glycosyltransferase that elaborates<em> N</em>-linked glycans on a protein phosphatase AcP115 and a GPI-anchor modifying glycan in <em>Trypanosoma brucei</em>

    Get PDF
    AbstractThe procyclic form of Trypanosoma brucei expresses procyclin surface glycoproteins with unusual glycosylphosphatidylinositol-anchor side chain structures that contain branched N-acetyllactosamine and lacto-N-biose units. The glycosyltransferase TbGT8 is involved in the synthesis of the branched side chain through its UDP-GlcNAc: βGal β1-3N-acetylglucosaminyltransferase activity. Here, we explored the role of TbGT8 in the mammalian bloodstream form of the parasite with a tetracycline-inducible conditional null T. brucei mutant for TbGT8. Under non-permissive conditions, the mutant showed significantly reduced binding to tomato lectin, which recognizes poly-N-acetyllactosamine-containing glycans. Lectin pull-down assays revealed differences between the wild type and TbGT8 null-mutant T. brucei, notably the absence of a broad protein band with an approximate molecular weight of 110kDa in the mutant lysate. Proteomic analysis revealed that the band contained several glycoproteins, including the acidic ecto-protein phosphatase AcP115, a stage-specific glycoprotein in the bloodstream form of T. brucei. Western blotting with an anti-AcP115 antibody revealed that AcP115 was approximately 10kDa smaller in the mutant. Enzymatic de-N-glycosylation demonstrated that the underlying protein cores were the same, suggesting that the 10-kDa difference was due to differences in N-linked glycans. Immunofluorescence microscopy revealed the colocalization of hemagglutinin epitope-tagged TbGT8 and the Golgi-associated protein GRASP. These data suggest that TbGT8 is involved in the construction of complex poly-N-acetyllactosamine-containing type N-linked and GPI-linked glycans in the Golgi of the bloodstream and procyclic parasite forms, respectively

    Structure-based development of specific inhibitors for individual cathepsins and their medical applications

    Get PDF
    Specific inhibitors for individual cathepsins have been developed based on their tertiary structures of X-ray crystallography. Cathepsin B-specific inhibitors, CA-074 and CA-030, and cathepsin L specific inhibitors, CLIK-148 and CLIK-195, were designed as the epoxysuccinate derivatives. Cathepsin S inhibitor, CLIK-060, and cathepsin K inhibitor, CLIK-166, were synthesized. These inhibitors can use in vitro and also in vivo, and show no toxicity for experimental animals by the amounts used as the cathepsin inhibitor

    The degree of microRNA-34b/c methylation in serum-circulating DNA is associated with malignant pleural mesothelioma

    Get PDF
    Objectives: Malignant pleural mesothelioma (MPM) is an aggressive tumor with a poor prognosis. microRNA-34b/c (miR-34b/c), which plays an important role in the pathogenesis of MPM, is frequently downregulated by DNA methylation in approximately 90% of MPM cases. In this study, we estimated the degree of miR-34b/c methylation in serum-circulating DNA using a digital methylation specific PCR assay (MSP). Materials and methods: A real-time MSP assay was performed using the SYBR Green method. The melting temperature (Tm) of each PCR product was examined using a melting curve analysis. For a digital MSP assay, 40 wells were analyzed per sample. A total of 110 serum samples from 48 MPM cases, 21 benign asbestos pleurisy (BAP) cases, and 41 healthy volunteers (HVs) were examined. Results: Positive range of Tm value for miR-34b/c methylation was defined as 77.71-78.79 degrees C which was the mean 3 standard deviations of 40 wells of a positive control. The number of miR-34b/c methylated wells was counted per sample according to this criterion. The number of miR-34b/c methylated wells in MPM cases was significantly higher than that in BAP cases (P = 0.03) or HVs (P < 0.001). Advanced MPM cases tended to have higher number of miR-34b/c methylated wells than early MPM cases. Receiver-operating characteristic (ROC) curve analysis revealed that three number of miR-34b/c methylated wells per sample was the best cut-off of positivity of MPM with a 67% of sensitivity and a 77% specificity for prediction. The area under the ROC curve was 0.77. Conclusions: Our digital MSP assay can quantify miR-34b/c methylation in serum-circulating DNA. The degree of miR-34b/c methylation in serum-circulating DNA is associated with MPM, suggesting that this approach might be useful for the establishment of a new detection system for MPM

    Telomeres and centromeres have interchangeable roles in promoting meiotic spindle formation

    Get PDF
    Telomeres and centromeres have traditionally been considered to perform distinct roles. During meiotic prophase, in a conserved chromosomal configuration called the bouquet, telomeres gather to the nuclear membrane (NM), often near centrosomes. We found previously that upon disruption of the fission yeast bouquet, centrosomes failed to insert into the NM at meiosis I and nucleate bipolar spindles. Hence, the trans-NM association of telomeres with centrosomes during prophase is crucial for efficient spindle formation. Nonetheless, in approximately half of bouquet-deficient meiocytes, spindles form properly. Here, we show that bouquet-deficient cells can successfully undergo meiosis using centromere-centrosome contact instead of telomere-centrosome contact to generate spindle formation. Accordingly, forced association between centromeres and centrosomes fully rescued the spindle defects incurred by bouquet disruption. Telomeres and centromeres both stimulate focal accumulation of the SUN domain protein Sad1 beneath the centrosome, suggesting a molecular underpinning for their shared spindlegenerating ability. Our observations demonstrate an unanticipated level of interchangeability between the two most prominent chromosomal landmarks.This work was supported by the European Research Council, Cancer Research UK, the National Institutes of Health, and a European Molecular Biology Organization long-term fellowship to A. Fernández-Álvarez

    Liver Suction-Mediated Transfection in Mice Using a Pressure-Controlled Computer System

    Get PDF
    We previously developed an in vivo tissue suction-mediated transfection method (denoted as the tissue suction method) for naked nucleic acids, such as plasmid DNA (pDNA) and small interfering RNA (siRNA), in mice. However, it remains unclear whether the suction pressure conditions affect the results of this method. Therefore, in the present study, we assembled a computer system to control the suction pressure and investigate the effects of the suction pressure conditions on the efficiency of the liver suction transfection of naked pDNA that encodes luciferase in mice. Using the developed system, we examined the effects of the minimum magnitude of the suction pressure, suction pressure waveform, and suction times of the luciferase expression level in mice livers. We determined that the liver suction method at -5 kPa was not only effective but also caused the lowest hepatic toxicity in mice. Additionally, the results indicated that the suction pressure waveform affects the luciferase expression levels, and a single period of suction on the targeted portion of the liver is sufficient for transfection. Thus, the developed system is useful for performing the tissue suction method with high accuracy and safety

    Tissue suction-mediated gene transfer to the beating heart in mice

    Get PDF
    We previously developed an in vivo site-specific transfection method using a suction device in mice; namely, a tissue suction-mediated transfection method (tissue suction method). The aim of this study was to apply the tissue suction method for cardiac gene transfer. Naked plasmid DNA (pDNA) was intravenously injected in mice, followed by direct suction on the beating heart by using a suction device made of polydimethylsiloxane. We first examined the effects of suction conditions on transgene expression and toxicity. Subsequently, we analyzed transgene-expressing cells and the transfected region of the heart. We found that heart suction induced transgene expression, and that −75 kPa and −90 kPa of suction achieved high transgene expression. In addition, the inner diameter of the suction device was correlated with transgene expression, but the pressure hold time did not change transgene expression. Although the tissue suction method at −75 kPa induced a transient increase in the serum cardiac toxicity markers at 6 h after transfection, these markers returned to normal at 24 h. The cardiac damage was also analyzed through the measurement of hypertrophic gene expression, but no significant differences were found. In addition, the cardiac function monitored by echocardiography remained normal at 11 days after transfection. Immunohistochemical analysis revealed that CD31-positive endothelial cells co-expressed the ZsGreen1-N1 reporter gene. In conclusion, the tissue suction method can achieve an efficient and safe gene transfer to the beating heart in mice

    <em>In vivo</em> Site-Specific Transfection of Naked Plasmid DNA and siRNAs in Mice by Using a Tissue Suction Device

    Get PDF
    <div><p>We have developed an <em>in vivo</em> transfection method for naked plasmid DNA (pDNA) and siRNA in mice by using a tissue suction device. The target tissue was suctioned by a device made of polydimethylsiloxane (PDMS) following the intravenous injection of naked pDNA or siRNA. Transfection of pDNA encoding luciferase was achieved by the suction of the kidney, liver, spleen, and heart, but not the duodenum, skeletal muscle, or stomach. Luciferase expression was specifically observed at the suctioned region of the tissue, and the highest luciferase expression was detected at the surface of the tissue (0.12±0.03 ng/mg protein in mice liver). Luciferase expression levels in the whole liver increased linearly with an increase in the number of times the liver was suctioned. Transfection of siRNA targeting glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene significantly suppressed the expression of GAPDH mRNA in the liver. Histological analysis shows that severe damage was not observed in the suctioned livers. Since the suction device can be mounted onto the head of the endoscope, this method is a minimally invasive. These results indicate that the <em>in vivo</em> transfection method developed in this study will be a viable approach for biological research and therapies using nucleic acids.</p> </div
    corecore