28 research outputs found

    Fiducial marker placement with electromagnetic navigation bronchoscopy: a subgroup analysis of the prospective, multicenter NAVIGATE study

    Get PDF
    Fiducial markers (FMs) help direct stereotactic body radiation therapy (SBRT) and localization for surgical resection in lung cancer management. We report the safety, accuracy, and practice patterns of FM placement utilizing electromagnetic navigation bronchoscopy (ENB). Methods: NAVIGATE is a global, prospective, multicenter, observational cohort study of ENB using the superDimension™ navigation system. This prospectively collected subgroup analysis presents the patient demographics, procedural characteristics, and 1-month outcomes in patients undergoing ENB-guided FM placement. Follow up through 24 months is ongoing. Results: Two-hundred fifty-eight patients from 21 centers in the United States were included. General anesthesia was used in 68.2%. Lesion location was confirmed by radial endobronchial ultrasound in 34.5% of procedures. The median ENB procedure time was 31.0 min. Concurrent lung lesion biopsy was conducted in 82.6% (213/258) of patients. A mean of 2.2 ± 1.7 FMs (median 1.0 FMs) were placed per patient and 99.2% were accurately positioned based on subjective operator assessment. Follow-up imaging showed that 94.1% (239/254) of markers remained in place. The procedure-related pneumothorax rate was 5.4% (14/258) overall and 3.1% (8/258) grade ⩾ 2 based on the Common Terminology Criteria for Adverse Events scale. The procedure-related grade ⩾ 4 respiratory failure rate was 1.6% (4/258). There were no bronchopulmonary hemorrhages. Conclusion: ENB is an accurate and versatile tool to place FMs for SBRT and localization for surgical resection with low complication rates. The ability to perform a biopsy safely in the same procedure can also increase efficiency. The impact of practice pattern variations on therapeutic effectiveness requires further study

    Long time black hole evaporation with bounded Hawking flux

    Full text link
    The long time behavior of an evaporating Schwarzschild black hole is studied exploiting that it can be described by an effective theory in 2D, a particular dilaton gravity model. A crucial technical ingredient is Izawa's result on consistent deformations of 2D BF theory, while the most relevant physical assumption is boundedness of the asymptotic matter flux during the whole evaporation process. An attractor solution, the endpoint of the evaporation process, is found. Its metric is flat. However, the behavior of the dilaton field is nontrivial: it is argued that during the final flicker a first order phase transition occurs from a linear to a constant dilaton vacuum, thereby emitting a shock wave with a total energy of a fraction of the Planck mass. Another fraction of the Planck mass may reside in a cold remnant. [Note: More detailed abstract in the paper]Comment: 34 pages, 6 figures, v2: included new references and 2 new footnotes; v3: mayor revisions (extended intro, included pedagogical example, rearranged presentation, extended discussion on information paradox, updated references); v4: updated refs. (+ new ones), added comments, mostly on dilaton evaporation, rewrote abstract (short for arXiv, long for journal), moved pedagogic sec. to ap

    Nanogels as Pharmaceutical Carriers: Finite Networks of Infinite Capabilities

    Get PDF
    Nanogels are swollen nanosized networks composed of hydrophilic or amphiphilic polymer chains. They are developed as carriers for the transport of drugs, and can be designed to spontaneously incorporate biologically active molecules through formation of salt bonds, hydrogen bonds, or hydrophobic interactions. Polyelectrolyte nanogels can readily incorporate oppositely charged low‐molecular‐mass drugs and biomacromolecules such as oligo‐ and polynucleotides (siRNA, DNA) as well as proteins. The guest molecules interact electrostatically with the ionic polymer chains of the gel and become bound within the finite nanogel. Multiple chemical functionalities can be employed in the nanogels to introduce imaging labels and to allow targeted drug delivery. The latter can be achieved, for example, with degradable or cleavable cross‐links. Recent studies suggest that nanogels have a very promising future in biomedical application

    Electromagnetic Navigation Bronchoscopy for Peripheral Pulmonary Lesions: One-Year Results of the Prospective, Multicenter NAVIGATE Study

    Get PDF

    Pulmonary Hemorrhage following Edge-to-Edge Mitral Valve Repair

    No full text
    Mitral valve repair with the MitraClip device has emerged as an effective treatment option for patients with severe mitral regurgitation and contraindications for surgical interventions. While the procedure is not known to cause pulmonary complications, we describe two cases of pulmonary hemorrhage following percutaneous mitral valve repair. The patients did well with supportive care and reinitiation of anticlotting agents was well tolerated after resolution of bleeding
    corecore