181 research outputs found

    Nanoparticles of Block Ionomer Complexes from Double Hydrophilic Poly(acrylic acid)-b-poly(ethylene oxide)-b-poly(acrylic acid) Triblock Copolymer and Oppositely Charged Surfactant

    Get PDF
    The novel water-dispersible nanoparticles from the double hydrophilic poly(acrylic acid)-b-poly(ethylene oxide)-b-poly(acrylic acid) (PAA-b-PEO-b-PAA) triblock copolymer and oppositely charged surfactant dodecyltrimethyl ammonium bromide (DTAB) were prepared by mixing the individual aqueous solutions. The structure of the nanoparticles was investigated as a function of the degree of neutralization (DN) by turbidimetry, dynamic light scattering (DSL),ζ-potential measurement, and atomic force microscope (AFM). The neutralization of the anionic PAA blocks with cationic DTAB accompanied with the hydrophobic interaction of alkyl tails of DTAB led to formation of core–shell nanoparticles with the core of the DTAB neutralized PAA blocks and the shell of the looped PEO blocks. The water-dispersible nanoparticles with negative ζ-potential were obtained over the DN range from 0.4 to 2.0 and their sizes depended on the DN. The looped PEO blocks hindered the further neutralization of the PAA blocks with cationic DTAB, resulting in existence of some negative charged PAA-b-PEO-b-PAA backbones even when DN > 1.0. The spherical and ellipsoidal nature of these nanoparticles was observed with AFM

    Monocyte Metabolic Reprogramming Promotes Pro-Inflammatory Activity and Staphylococcus Aureus Biofilm Clearance

    Get PDF
    Biofilm-associated prosthetic joint infections (PJIs) cause significant morbidity due to their recalcitrance to immune-mediated clearance and antibiotics, with Staphylococcus aureus (S. aureus) among the most prevalent pathogens. We previously demonstrated that S. aureus biofilm-associated monocytes are polarized to an anti-inflammatory phenotype and the adoptive transfer of pro-inflammatory macrophages attenuated biofilm burden, highlighting the critical role of monocyte/macrophage inflammatory status in dictating biofilm persistence. The inflammatory properties of leukocytes are linked to their metabolic state, and here we demonstrate that biofilm-associated monocytes exhibit a metabolic bias favoring oxidative phosphorylation (OxPhos) and less aerobic glycolysis to facilitate their anti-inflammatory activity and biofilm persistence. To shift monocyte metabolism in vivo and reprogram cells to a pro-inflammatory state, a nanoparticle approach was utilized to deliver the OxPhos inhibitor oligomycin to monocytes. Using a mouse model of S. aureus PJI, oligomycin nanoparticles were preferentially internalized by monocytes, which significantly reduced S. aureus biofilm burden by altering metabolism and promoting the pro-inflammatory properties of infiltrating monocytes as revealed by metabolomics and RT-qPCR, respectively. Injection of oligomycin alone had no effect on monocyte metabolism or biofilm burden, establishing that intracellular delivery of oligomycin is required to reprogram monocyte metabolic activity and that oligomycin lacks antibacterial activity against S. aureus biofilms. Remarkably, monocyte metabolic reprogramming with oligomycin nanoparticles was effective at clearing established biofilms in combination with systemic antibiotics. These findings suggest that metabolic reprogramming of biofilm-associated monocytes may represent a novel therapeutic approach for PJI

    Soluble Stoichiometric Complexes from Poly(N-ethyl-4-vinylpyridinium) Cations and Poly(ethylene oxide)-block-polymethacrylate Anions

    Get PDF
    Block ionomer complexes formed between the block copolymers containing poly(sodium methacrylate) (PMANa) and poly(ethylene oxide) (PEO) segments and poly(N-ethyl-4-vinylpyridinium bromide) (PEVP) were investigated. The data obtained suggest that (i) these systems form water-soluble stoichiometric complexes; (ii) these complexes are stable in a much broader pH range compared to the polyelectrolyte complexes prepared from homopolymers; (iii) they self-assemble to form the core of a micelle comprised of neutralized polyions, surrounded by the PEO corona; (iv) they are salt sensitive since they fall apart as the salt concentration increases beyond a critical value; and (v) they can participate in the cooperative polyion substitution reactions. Therefore, these complexes represent a new class of hybrid materials which combine properties of polyelectrolyte complexes and block copolymer micelles
    • …
    corecore