100 research outputs found

    Opto-mechanics in a Michelson-Sagnac interferometer

    Get PDF
    [no abstract

    Anomalous dynamic back-action in interferometers

    Full text link
    We analyze the dynamic optomechanical back-action in signal-recycled Michelson and Michelson-Sagnac interferometers that are operated off dark port. We show that in this case --- and in contrast to the well-studied canonical form of dynamic back-action on dark port --- optical damping in a Michelson-Sagnac interferometer acquires a non-zero value on cavity resonance, and additional stability/instability regions on either side of the resonance, revealing new regimes of cooling/heating of micromechanical oscillators. In a free-mass Michelson interferometer for a certain region of parameters we predict a stable single-carrier optical spring (positive spring and positive damping), which can be utilized for the reduction of quantum noise in future-generation gravitational-wave detectors.Comment: 9 pages, 5 figures. Paper reorganize

    Observation of generalized optomechanical coupling and cooling on cavity resonance

    Full text link
    Optomechanical coupling between a light field and the motion of a cavity mirror via radiation pressure plays an important role for the exploration of macroscopic quantum physics and for the detection of gravitational waves (GWs). It has been used to cool mechanical oscillators into their quantum ground states and has been considered to boost the sensitivity of GW detectors, e.g. via the optical spring effect. Here, we present the experimental characterization of generalized, that is, dispersive and dissipative optomechanical coupling, with a macroscopic (1.5mm)^2-sized silicon nitride (SiN) membrane in a cavity-enhanced Michelson-type interferometer. We report for the first time strong optomechanical cooling based on dissipative coupling, even on cavity resonance, in excellent agreement with theory. Our result will allow for new experimental regimes in macroscopic quantum physics and GW detection

    Tomographic readout of an opto-mechanical interferometer

    Get PDF
    The quantum state of light changes its nature when being reflected off a mechanical oscillator due to the latter's susceptibility to radiation pressure. As a result, a coherent state can transform into a squeezed state and can get entangled with the motion of the oscillator. The complete tomographic reconstruction of the state of light requires the ability to readout arbitrary quadratures. Here we demonstrate such a readout by applying a balanced homodyne detector to an interferometric position measurement of a thermally excited high-Q silicon nitride membrane in a Michelson-Sagnac interferometer. A readout noise of \unit{1.9 \cdot 10^{-16}}{\metre/\sqrt{\hertz}} around the membrane's fundamental oscillation mode at \unit{133}{\kilo\hertz} has been achieved, going below the peak value of the standard quantum limit by a factor of 8.2 (9 dB). The readout noise was entirely dominated by shot noise in a rather broad frequency range around the mechanical resonance.Comment: 7 pages, 5 figure

    Interferometer readout-noise below the Standard Quantum Limit of a membrane

    Get PDF
    Here we report on the realization of a Michelson-Sagnac interferometer whose purpose is the precise characterization of the motion of membranes showing significant light transmission. Our interferometer has a readout noise spectral density (imprecision) of 3E-16 m/sqrt(Hz) at frequencies around the fundamental resonance of a SiN_x membrane at about 100 kHz, without using optical cavities. The readout noise demonstrated is more than 16 dB below the peak value of the membrane's standard quantum limit (SQL). This reduction is significantly higher than those of previous works with nano-wires [Teufel et al., Nature Nano. 4, 820 (2009); Anetsberger et al., Nature Phys. 5, 909 (2009)]. We discuss the meaning of the SQL for force measurements and its relation to the readout performance and conclude that neither our nor previous experiments achieved a total noise spectral density as low as the SQL

    Optical absorption of silicon nitride membranes at 1064 nm and at 1550 nm

    Get PDF
    Because of a low mechanical loss, thin films made of silicon nitride (Si3N4) are interesting for fundamental research and development in the field of gravitational-wave detection. Si3N4 membranes allow for the characterization of quantum radiation pressure noise (RPN), which will be a limiting noise source in gravitational-wave detectors of the second and third generations. Furthermore, Si3N4 is an interesting material for possible thermal noise reduction in highly reflective mirror coatings. For both applications, the optical absorption of Si3N4 needs to be low. This paper presents absorption measurements on low-stress Si3N4 membranes showing an absorption a factor of 7 lower at 1550 nm than at 1064 nm resulting in an estimated 2 times higher sensitivity in RPN experiments at the higher wavelength and making Si3N4 an interesting material for highly reflective multimaterial mirror coatings at 1550 nm

    HD 144432: a young triple system

    Full text link
    We present new imaging and spectroscopic data of the young Herbig star HD 144432 A, which was known to be a binary star with a separation of 1.47 arcsec. High-resolution NIR imaging data obtained with NACO at the VLT reveal that HD 144432 B itself is a close binary pair with a separation of 0.1 arcsec. High-resolution optical spectra, acquired with FEROS at the 2.2m MPG/ESO telescope in La Silla, of the primary star and its co-moving companions were used to determine their main stellar parameters such as effective temperature, surface gravity, radial velocity, and projected rotational velocity by fitting synthetic spectra to the observed stellar spectra. The two companions, HD 144432 B and HD 144432 C, are identified as low-mass T Tauri stars of spectral type K7V and M1V, respectively. From the position in the HRD the triple system appears to be co-eval with a system age of 6+/-3 Myr.Comment: Accepted for publication in Astronomy & Astrophysics, 4 pages, 4 figure

    Rotational velocities of nearby young stars

    Full text link
    Stellar rotation is a crucial parameter driving stellar magnetism, activity and mixing of chemical elements. Furthermore, the evolution of stellar rotation is coupled to the evolution of circumstellar disks. Disk-braking mechanisms are believed to be responsible for rotational deceleration during the accretion phase, and rotational spin-up during the contraction phase after decoupling from the disk for fast rotators arriving at the ZAMS. We investigate the projected rotational velocities vsini of a sample of young stars with respect to the stellar mass and disk evolutionary state to search for possible indications of disk-braking mechanisms. We analyse the stellar spectra of 220 nearby (mostly <100pc) young (2-600 Myr) stars for their vsini, stellar age, Halpha emission, and accretion rates. The stars have been observed with FEROS and HARPS in La Silla, Chile. The spectra have been cross-correlated with appropriate theoretical templates. We build a new calibration to be able to derive vsini values from the cross-correlated spectra. Stellar ages are estimated from the LiI equivalent width at 6708 Ang. The equivalent width and width at 10% height of the Halpha emission are measured to identify accretors and used to estimate accretion rates. The vsini is then analysed with respect to the evolutionary state of the circumstellar disks to search for indications of disk-braking mechanisms in accretors. We find that the broad vsini distribution of our targets extends to rotation velocities of up to more than 100 km/s and peaks at a value of 7.8+-1.2 km/s, and that ~70% of our stars show vsini<30 km/s. Furthermore, we can find indications for disk-braking in accretors and rotational spin-up of stars which are decoupled from their disks. In addition, we show that a number of young stars are suitable for precise radial-velocity measurements for planet-search surveys.Comment: 16 pages, 6 figures, accepted for publication in A&

    Optical spectroscopy of EX Lupi during quiescence and outburst: Infall, wind, and dynamics in the accretion flow

    Full text link
    We explore the accretion mechanisms in EX Lupi, prototype of EXor variables, during its quiescence and outburst phases. We analyse high-resolution optical spectra taken before, during, and after its 2008 outburst. In quiescence and outburst, the star presents many permitted emission lines, including typical CTTS lines and numerous neutral and ionized metallic lines. During the outburst, the number of emission lines increases to over a thousand, with narrow plus broad component structure (NC+BC). The BC profile is highly variable on short timescales (24-72h). An active chromosphere can explain the metallic lines in quiescence and the outburst NC. The dynamics of the BC line profiles suggest an origin in a hot, dense, non-axisymmetric, and non-uniform accretion column that suffers velocity variations along the line-of-sight on timescales of days. Assuming Keplerian rotation, the emitting region would be located at ~0.1-0.2 AU, consistent with the inner disk rim, but the velocity profiles of the lines reveal a combination of rotation and infall. Line ratios of ions and neutrals can be reproduced with a temperature of T~6500 K for electron densities of a few times 1012^{12}cm3^{-3} in the line-emitting region. The data confirm that the 2008 outburst was an episode of increased accretion, albeit much stronger than previous EX Lupi and typical EXors outbursts. The line profiles are consistent with the infall/rotation of a non-axisymmetric structure that could be produced by clumpy accretion during the outburst phase. A strong inner disk wind appears in the epochs of higher accretion. The rapid recovery of the system after the outburst and the similarity between the pre-outburst and post-outburst states suggest that the accretion channels are similar during the whole period, and only the accretion rate varies, providing a superb environment for studying the accretion processes.Comment: 15 pages plus 26 pages online material, accepted by A&

    EX Lupi in quiescence

    Full text link
    EX Lup is the prototype of EXors, a subclass of low-mass pre-main sequence stars whose episodic eruptions are attributed to temporarily increased accretion. In quiescence the optical and near-infrared properties of EX Lup cannot be distinguished from those of normal T Tau stars. Here we investigate whether it is the circumstellar disk structure which makes EX Lup an atypical Class II object. During outburst the disk might undergo structural changes. Our characterization of the quiescent disk is intended to serve as a reference to study the physical changes related to one of EX Lupi's strongest known eruptions in 2008 Jan-Sep. We searched the literature for photometric and spectroscopic observations including ground-based, IRAS, ISO and Spitzer data. After constructing the optical-infrared spectral energy distribution (SED), we compared it with the typical SEDs of other young stellar objects and modeled it using the Monte Carlo radiative transfer code RADMC. A mineralogical decomposition of the 10 micron silicate emission feature and also the description of the optical and near-infrared spectra were performed. The SED is in general similar to that of a typical T Tauri star, though above 7 micron EX Lup emits higher flux. The quiescent phase data suggest low level variability in the optical-mid-infrared domain. Integrating the optical and infrared fluxes we derived a bolometric luminosity of 0.7 L_Sun. The 10 micron silicate profile could be fitted by a mixture consisting of amorphous silicates, no crystalline silicates were found. A modestly flaring disk model with a total mass of 0.025 M_Sun and an outer radius of 150 AU was able to reproduce the observed SED. The derived inner radius of 0.2 AU is larger than the sublimation radius, and this inner gap sets EX Lup aside from typical T Tauri stars.Comment: Accepted for publication in Astronomy and Astrophysics, 10 pages, 6 figure
    corecore