601 research outputs found

    The Effects of Low Latency on Pointing and Steering Tasks

    Get PDF
    Latency is detrimental to interactive systems, especially pseudo-physical systems that emulate real-world behaviour. It prevents users from making quick corrections to their movement, and causes their experience to deviate from their expectations. Latency is a result of the processing and transport delays inherent in current computer systems. As such, while a number of studies have hypothesized that any latency will have a degrading effect, few have been able to test this for latencies less than ~50 ms. In this study we investigate the effects of latency on pointing and steering tasks. We design an apparatus with a latency lower than typical interactive systems, using it to perform interaction tasks based on Fitts’s law and the Steering law. We find evidence that latency begins to affect performance at ~16 ms, and that the effect is non-linear. Further, we find latency does not affect the various components of an aiming motion equally. We propose a three stage characterisation of pointing movements with each stage affected independently by latency. We suggest that understanding how users execute movement is essential for studying latency at low levels, as high level metrics such as total movement time may be misleading

    Provenance and Paleogeography of the 25-17 Ma Rainbow Gardens Formation: Evidence for Tectonic Activity at Ca. 19 Ma and Internal Drainage rather than Throughgoing Paleorivers on the Southwestern Colorado Plateau

    Get PDF
    The paleogeographic evolution of the Lake Mead region of southern Nevada and northwest Arizona is crucial to understanding the geologic history of the U.S. Southwest, including the evolution of the Colorado Plateau and formation of the Grand Canyon. The ca. 25–17 Ma Rainbow Gardens Formation in the Lake Mead region, the informally named, roughly coeval Jean Conglomerate, and the ca. 24–19 Ma Buck and Doe Conglomerate southeast of Lake Mead hold the only stratigraphic evidence for the Cenozoic pre-extensional geology and paleogeography of this area. Building on prior work, we present new sedimentologic and stratigraphic data, including sandstone provenance and detrital zircon data, to create a more detailed paleogeographic picture of the Lake Mead, Grand Wash Trough, and Hualapai Plateau region from 25 to 18 Ma. These data confirm that sediment was sourced primarily from Paleozoic strata exposed in surrounding Sevier and Laramide uplifts and active volcanic fields to the north. In addition, a distinctive signal of coarse sediment derived from Proterozoic crystalline basement first appeared in the southwestern corner of the basin ca. 25 Ma at the beginning of Rainbow Gardens Formation deposition and then prograded north and east ca. 19 Ma across the southern half of the basin. Regional thermochronologic data suggest that Cretaceous deposits likely blanketed the Lake Mead region by the end of Sevier thrusting. Post-Laramide northward cliff retreat off the Kingman/Mogollon uplifts left a stepped erosion surface with progressively younger strata preserved northward, on which Rainbow Gardens Formation strata were deposited. Deposition of the Rainbow Gardens Formation in general and the 19 Ma progradational pulse in particular may reflect tectonic uplift events just prior to onset of rapid extension at 17 Ma, as supported by both thermochronology and sedimentary data. Data presented here negate the California and Arizona River hypotheses for an “old” Grand Canyon and also negate models wherein the Rainbow Gardens Formation was the depocenter for a 25–18 Ma Little Colorado paleoriver flowing west through East Kaibab paleocanyons. Instead, provenance and paleocurrent data suggest local to regional sources for deposition of the Rainbow Gardens Formation atop a stripped low-relief western Colorado Plateau surface and preclude any significant input from a regional throughgoing paleoriver entering the basin from the east or northeast

    Westernmost Grand Canyon incision: Testing thermochronometric resolution

    Get PDF
    The timing of carving of Grand Canyon has been debated for over 100 years with competing endmember hypotheses advocating for either a 70 Ma (“old”) or <6 Ma (“young”) Grand Canyon. Several geological constraints appear to support a “young” canyon model, but thermochronometric measures of cooling history and corresponding estimates of landscape evolution have been in debate. In particular, 4He/3He thermochronometric data record the distribution of radiogenic 4He (from the 238U, 235U and 232Th decay series) within an individual apatite crystal and thus are highly sensitive to the thermal history corresponding to landscape evolution. However, there are several complicating factors that make interpreting such data challenging in geologic scenarios involving reheating. Here, we analyze new data that provide measures of the cooling of basement rocks at the base of westernmost Grand Canyon, and use these data as a testbed for exploring the resolving power and limitations of 4He/3He data in general. We explore a range of thermal histories and find that these data are most consistent with a “young” Grand Canyon. A problem with the recovered thermal history, however, is that burial temperatures are under predicted based on sedimentological evidence. A solution to this problem is to increase the resistance of alpha recoil damage to annealing, thus modifying He diffusion kinetics, allowing for higher temperatures throughout the thermal history. This limitation in quantifying radiation damage (and hence crystal retentivity) introduces non-uniqueness to interpreting time–temperature paths in rocks that resided in the apatite helium partial retention zone for long durations. Another source of non-uniqueness, is due to unknown U and Th distributions within crystals. We show that for highly zoned with a decrease in effective U of 20 ppm over the outer 80% of the radius of the crystal, the 4He/3He data could be consistent with an “old” canyon model. To reduce this non-uniqueness, we obtain U and Th zonation information for separate crystals from the same rock sample through LA-ICP-MS analysis. The observed U and Th distributions are relatively uniform and not strongly zoned, thus supporting a “young” canyon model interpretation of the 4He/3He data. Furthermore, we show that for the mapped zonation, the difference between predicted 4He/3He data for a uniform crystal and a 3D model of the crystal are minimal, highlighting that zonation is unlikely to lead us to falsely infer an “old” Grand Canyon

    Applying spatial regression to evaluate risk factors for microbiological contamination of urban groundwater sources in Juba, South Sudan

    Get PDF
    This study developed methodology for statistically assessing groundwater contamination mechanisms. It focused on microbial water pollution in low-income regions. Risk factors for faecal contamination of groundwater-fed drinking-water sources were evaluated in a case study in Juba, South Sudan. The study was based on counts of thermotolerant coliforms in water samples from 129 sources, collected by the humanitarian aid organisation M,decins Sans FrontiSres in 2010. The factors included hydrogeological settings, land use and socio-economic characteristics. The results showed that the residuals of a conventional probit regression model had a significant positive spatial autocorrelation (Moran\u27s I = 3.05, I-stat = 9.28); therefore, a spatial model was developed that had better goodness-of-fit to the observations. The most significant factor in this model (p-value 0.005) was the distance from a water source to the nearest Tukul area, an area with informal settlements that lack sanitation services. It is thus recommended that future remediation and monitoring efforts in the city be concentrated in such low-income regions. The spatial model differed from the conventional approach: in contrast with the latter case, lowland topography was not significant at the 5% level, as the p-value was 0.074 in the spatial model and 0.040 in the traditional model. This study showed that statistical risk-factor assessments of groundwater contamination need to consider spatial interactions when the water sources are located close to each other. Future studies might further investigate the cut-off distance that reflects spatial autocorrelation. Particularly, these results advise research on urban groundwater quality

    Eruptions at Lone Star Geyser, Yellowstone National Park, USA: 1. Energetics and eruption dynamics

    Get PDF
    Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 118 (2013): 4048–4062, doi:10.1002/jgrb.50251.Geysers provide a natural laboratory to study multiphase eruptive processes. We present results from a 4 day experiment at Lone Star Geyser in Yellowstone National Park, USA. We simultaneously measured water discharge, acoustic emissions, infrared intensity, and visible and infrared video to quantify the energetics and dynamics of eruptions, occurring approximately every 3 h. We define four phases in the eruption cycle (1) a 28±3 min phase with liquid and steam fountaining, with maximum jet velocities of 16–28 m s−1, steam mass fraction of less than ∌0.01. Intermittently choked flow and flow oscillations with periods increasing from 20 to 40 s are coincident with a decrease in jet velocity and an increase of steam fraction; (2) a 26±8 min posteruption relaxation phase with no discharge from the vent, infrared (IR), and acoustic power oscillations gliding between 30 and 40 s; (3) a 59±13 min recharge period during which the geyser is quiescent and progressively refills, and (4) a 69±14 min preplay period characterized by a series of 5–10 min long pulses of steam, small volumes of liquid water discharge, and 50–70 s flow oscillations. The erupted waters ascend from a 160–170°C reservoir, and the volume discharged during the entire eruptive cycle is 20.8±4.1 m3. Assuming isentropic expansion, we calculate a heat output from the geyser of 1.4–1.5 MW, which is <0.1% of the total heat output from Yellowstone Caldera.Support comes from NSF (L. Karlstrom, M. Manga), the USGS Volcano Hazards program (S. Hurwitz, F. Murphy, M.J.S. Johnston, and R.B. McCleskey), and WHOI (R. Sohn).2014-02-1

    Eruptions at Lone Star geyser, Yellowstone National Park, USA: 2. Constraints on subsurface dynamics

    Get PDF
    Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 119 (2014): 8688–8707, doi:10.1002/2014JB011526.We use seismic, tilt, lidar, thermal, and gravity data from 32 consecutive eruption cycles of Lone Star geyser in Yellowstone National Park to identify key subsurface processes throughout the geyser's eruption cycle. Previously, we described measurements and analyses associated with the geyser's erupting jet dynamics. Here we show that seismicity is dominated by hydrothermal tremor (~5–40 Hz) attributed to the nucleation and/or collapse of vapor bubbles. Water discharge during eruption preplay triggers high-amplitude tremor pulses from a back azimuth aligned with the geyser cone, but during the rest of the eruption cycle it is shifted to the east-northeast. Moreover, ~4 min period ground surface displacements recur every 26 ± 8 min and are uncorrelated with the eruption cycle. Based on these observations, we conclude that (1) the dynamical behavior of the geyser is controlled by the thermo-mechanical coupling between the geyser conduit and a laterally offset reservoir periodically filled with a highly compressible two-phase mixture, (2) liquid and steam slugs periodically ascend into the shallow crust near the geyser system inducing detectable deformation, (3) eruptions occur when the pressure decrease associated with overflow from geyser conduit during preplay triggers an unstable feedback between vapor generation (cavitation) and mass discharge, and (4) flow choking at a constriction in the conduit arrests the runaway process and increases the saturated vapor pressure in the reservoir by a factor of ~10 during eruptions.Funding for USGS team members was provided by the USGS Volcano Hazards Program. R. Sohn's participation was supported by the WHOI Green Technology Program. M. Manga, L. Karlstrom and M. Rudolph did receive salary from the National Science Foundation to spend time on this project.2015-06-0

    High-Precision U-Pb Geochronology Links Magmatism in the Southwestern Laurentia Large Igneous Province and Midcontinent Rift

    Get PDF
    The Southwestern Laurentia large igneous province (SWLLIP) comprises voluminous, widespread ca 1.1 Ga magmatism in the southwestern United States and northern Mexico. The timing and tempo of SWLLIP magmatism and its relationship to other late Mesoproterozoic igneous provinces have been unclear due to difficulties in dating mafic rocks at high precision. New precise U-Pb zircon dates for comagmatic felsic segregations within mafic rocks reveal distinct magmatic episodes at ca. 1098 Ma (represented by massive sills in Death Valley, California, the Grand Canyon, and central Arizona) and ca. 1083 Ma (represented by the Cardenas Basalts in the Grand Canyon and a sill in the Dead Mountains, California). The ca. 1098 Ma magmatic pulse was short-lived, lasting 0.25^+0.67_-0.24 m.y., and voluminous and widespread, evidenced by the ≄100 m sills in Death Valley, the Grand Canyon, and central Arizona, consistent with decompression melting of an upwelling mantle plume. The ca. 1083 Ma magmatism may have been generated by a secondary plume pulse or post-plume lithosphere extension. The ca. 1098 Ma pulse of magmatism in southwestern Laurentia occurred ≁2 m.y. prior to an anomalous renewal of voluminous melt generation in the Midcontinent Rift of central Laurentia that is recorded by the ca. 1096 Ma Duluth Complex layered mafic intrusions. Rates of lateral plume spread predicted by mantle plume lubrication theory support a model where a plume derived from the deep mantle impinged near southwestern Laurentia, then spread to thinned Midcontinent Rift lithosphere over ~2 m.y. to elevate mantle temperatures and generate melt. This geodynamic hypothesis reconciles the close temporal relationships between voluminous magmatism across Laurentia and provides an explanation for that anomalous renewal of high magmatic flux within the protracted magmatic history of the Midcontinent Rift

    The laurentian record of neoproterozoic glaciation, tectonism, and eukaryotic evolution in Death Vally, California

    Get PDF
    Neoproterozoic strata in Death Valley, California contain eukaryotic microfossils and glacial deposits that have been used to assess the severity of putative Snowball Earth events and the biological response to extreme environmental change. These successions also contain evidence for syn-sedimentary faulting that has been related to the rifting of Rodinia, and in turn the tectonic context of the onset of Snowball Earth. These interpretations hinge on local geological relationships and both regional and global stratigraphic correlations. Here we present new geological mapping, measured stratigraphic sections, carbon and strontium isotope chemostratigraphy, and micropaleontology from the Neoproterozoic glacial deposits and bounding strata in Death Valley. These new data enable us to refine regional correlations both across Death Valley and throughout Laurentia, and construct a new age model for glaciogenic strata and microfossil assemblages. Particularly, our remapping of the Kingston Peak Formation in the Saddle Peak Hills and near the type locality shows for the first time that glacial deposits of both the Marinoan and Sturtian glaciations can be distinguished in southeastern Death Valley, and that beds containing vase-shaped microfossils are slump blocks derived from the underlying strata. These slump blocks are associated with multiple overlapping unconformities that developed during syn-sedimentary faulting, which is a common feature of Cyrogenian strata along the margin of Laurentia from California to Alaska. With these data, we conclude that all of the microfossils that have been described to date in Neoproterozoic strata of Death Valley predate the glaciations and do not bear on the severity, extent or duration of Neoproterozoic Snowball Earth events

    Late Miocene erosion and evolution of topography along the western slope of the Colorado Rockies

    Get PDF
    In the Colorado Rocky Mountains, the association of high topography and low seismic velocity in the underlying mantle suggests that recent changes in lithospheric buoyancy may have been associated with surface uplift of the range. This paper examines the relationships among late Cenozoic fl uvial incision, channel steepness, and mantle velocity domains along the western slope of the northern Colorado Rockies. New 40Ar/39Ar ages on basalts capping the Tertiary Browns Park Formation range from ca. 11 to 6 Ma and provide markers from which we reconstruct incision along the White, Yampa, and Little Snake rivers. The magnitude of post-10 Ma incision varies systematically from north to south, increasing from ~ 500 m along the Little Snake River to ~1500 m along the Colorado River. Spatial variations in the amount of late Cenozoic incision are matched by metrics of channel steepness; the upper Colorado River and its tributaries (e.g., Gunnison and Dolores rivers) are two to three times steeper than the Yampa and White rivers, and these variations are independent of both discharge and lithologic substrate. The coincidence of steep river profi les with deep incision suggests that the fl uvial systems are dynamically adjusting to an external forcing but is not readily explained by a putative increase in erosivity associated with late Cenozoic climate change. Rather, channel steepness correlates with the position of the channels relative to low-velocity mantle. We suggest that the history of late Miocene-present incision and channel adjustment refl ects long-wavelength tilting across the western slope of the Rocky Mountains

    Incision history of the Black Canyon of Gunnison, Colorado, over the past ~1 Ma inferred from dating of fluvial gravel deposits

    Get PDF
    Spatio-temporal variability in fluvial incision rates in bedrock channels provides data regarding uplift and denudation histories of landscapes. The longitudinal profi le of the Gunnison River (Colorado), tributary to the Colorado River, contains a prominent knickzone with 800 m of relief across it within the Black Canyon of the Gunnison. Average bedrock incision rates over the last 0.64 Ma surrounding the knickpoint vary from 150 m/Ma (downstream) to 400-550 m/Ma (within) to 90-95 m/Ma (upstream), suggesting it is a transient feature. Lava Creek B ash constrains strath terraces along a paleoprofi le of the river. An isochron cosmogenic burial date in the paleo-Bostwick River of 870 ± 220 ka is consistent with the presence of 0.64 Ma Lava Creek B ash in locally derived, stratigraphically younger sediment. With 350 m of incision since deposition, we determine an incision rate of 400-550 m/Ma, reflecting incision through resistant basement rock at 2-3 times regional incision rates. Such contrast is attributed to a wave of transient incision, potentially initiated by downstream base-level fall during abandonment of Unaweep Canyon at ca. 1 Ma. Rate extrapolation indicates that the ~700 m depth of Black Canyon has been eroded since 1.3-1.75 Ma. The Black Canyon knickpoint overlies a strong gradient between low-velocity mantle under the Colorado Rockies and higher-velocity mantle of the Colorado Plateau. We interpret recent reorganization and transient incision of both the Gunnison River and upper Colorado River systems to be a response to mantle-driven epeirogenic uplift of the southern Rockies in the last 10 Ma
    • 

    corecore