93 research outputs found
Consequences of partial and severe dopaminergic lesion on basal ganglia oscillatory activity and akinesia
Severe chronic dopamine (DA) depletion increases the proportion of neurons in the basal ganglia that fire rhythmic bursts of action potential (LFO units) synchronously with the cortical oscillations. Here we report on how different levels of mesencephalic DA denervation affect substantia nigra pars reticulata (SNpr) neuronal activity in the rat and its relationship to akinesia (stepping test). Chronic nigrostriatal lesion induced with 0 (control group), 4, 6 or 8 microg of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle resulted in a dose-dependent decrease of tyrosine hydroxylase positive (TH+) neurons in the SN and ventral tegmental area (VTA). Although 4 microg of 6-OHDA reduced the number of TH+ neurons in the SN by approximately 60%, both stepping test performance and SNpr neuronal activity remained indistinguishable from control animals. By contrast, animals that received 6 microg of 6-OHDA showed a marked reduction of TH+ cells in the SN ( approximately 75%) and VTA ( approximately 55%), a significant stepping test deficit and an increased proportion of LFO units. These changes were not dramatically enhanced with 8 microg 6-OHDA, a dose that induced an extensive DA lesion (> 95%) in the SN and approximately 70% reduction of DA neurons in the VTA. These results suggest a threshold level of DA denervation for both the appearance of motor deficits and LFO units. Thus, the presence of LFO activity in the SNpr is not related to a complete nigrostriatal DA neuron depletion (ultimate stage parkinsonism); instead, it may reflect a functional disruption of cortico-basal ganglia dynamics associated with clinically relevant stages of the disease.Fil: Tseng, Kuei Y.. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Fisiología de Circuitos Neuronales; ArgentinaFil: Kargieman, Lucila. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Fisiología de Circuitos Neuronales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Gacio, Sebastian. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Fisiología de Circuitos Neuronales; ArgentinaFil: Riquelme, Luis Alberto. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Fisiología de Circuitos Neuronales; ArgentinaFil: Murer, Mario Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Fisiología de Circuitos Neuronales; Argentin
Genetic association analysis of N-methyl-d-aspartate receptor subunit gene GRIN2B and clinical response to clozapine
OBJECTIVE: Approximately 30% of patients with schizophrenia fail to respond to antipsychotic therapy and are classified as having treatment-resistant schizophrenia. Clozapine is the most efficacious drug for treatment-resistant schizophrenia and may deliver superior therapeutic effects partly by modulating glutamate neurotransmission. Response to clozapine is highly variable and may depend on genetic factors as indicated by twin studies. We investigated eight polymorphisms in the N-methyl-d-aspartate glutamate receptor subunit gene GRIN2B with response to clozapine. METHODS: GRIN2B variants were genotyped using standard TaqMan procedures in 175 European patients with schizophrenia deemed resistant or intolerant to treatment. Response was assessed using change in Brief Psychiatric Rating Scale scores following six months of clozapine therapy. Categorical and continuous response was assessed using chi-squared test and analysis of covariance, respectively. RESULTS: No associations were observed between the variants and response to clozapine. A-allele carriers of rs1072388 responded marginally better to clozapine therapy than GG-homozygotes; however, the difference was not statistically significant (p = 0.067, uncorrected). CONCLUSIONS: Our findings do not support a role for these GRIN2B variants in altering response to clozapine in our sample. Investigation of additional glutamate variants in clozapine response is warranted. Copyright © 2016 John Wiley & Sons, Ltd
Overstimulation of NMDA Receptors Impairs Early Brain Development in vivo
BACKGROUND: Brains of patients with schizophrenia show both neurodevelopmental and functional deficits that suggest aberrant glutamate neurotransmission. Evidence from both genetic and pharmacological studies suggests that glutamatergic dysfunction, particularly with involvement of NMDARs, plays a critical role in the pathophysiology of schizophrenia. However, how prenatal disturbance of NMDARs leads to schizophrenia-associated developmental defects is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Glutamate transporter GLAST/GLT1 double-knockout (DKO) mice carrying the NMDA receptor 1 subunit (NR1)-null mutation were generated. Bouin-fixed and paraffin-embedded embryonic day 16.5 coronal brain sections were stained with hematoxylin, anti-microtubule-associated protein 2 (MAP2), and anti-L1 antibodies to visualize cortical, hippocampal, and olfactory bulb laminar structure, subplate neurons, and axonal projections. NR1 deletion in DKO mice almost completely rescued multiple brain defects including cortical, hippocampal, and olfactory bulb disorganization and defective corticothalamic and thalamocortical axonal projections. CONCLUSIONS/SIGNIFICANCE: Excess glutamatergic signaling in the prenatal stage compromises early brain development via overstimulation of NMDARs
Altered cortico-striatal crosstalk underlies object recognition memory deficits in the sub-chronic phencyclidine model of schizophrenia
Serotonergic hallucinogens differentially modify gamma and high frequency oscillations in the rat nucleus accumbens
Effects of NMDA receptor antagonists and antipsychotics on high frequency oscillations recorded in the nucleus accumbens of freely moving mice
Role of prefrontal cortex in pharmacological models of schizophrenia and antipsychotic action
NMDA receptor (NMDA-R) antagonists are extensively used as schizophrenia
models due to their ability to evoke positive and negative symptoms as well as cognitive
deficits similar to those of the illness. Likewise, 5-HT2A receptor agonists display
hallucinogen actions resembling psychotic symptoms. Overall, these drugs are useful models
of schizophrenia for the screening of new antipsychotic drugs. However, the cellular
and network elements involved in these actions are poorly known. Data obtained by several
groups in recent years indicate that the prefrontal cortex (PFC) and anatomically related
areas play a major role in these actions. This paper summarizes data obtained by the authors
supporting that a) NMDA-R antagonists (phencyclidine –PCP–, dizocilpine –MK–801–)
and 5-HT2A agonists (DOI) alter the function of PFC in a similar fashion, and b) antipsychotic
drugs exert their therapeutic action, at least in part, by normalizing hyperactivity
states in PFC. While the actions of NMDA-R antagonists may involve blockade of these
receptors in PFC and subcortical areas, that of antipsychotic drugs, in particular atypical
drugs like clozapine, appear to be mediated essentially by a local action in PFC. These results
help to better understand the neurobiological basis of the action of pharmacological
models of schizophrenia and the mode of action of antipsychotic drugs.Work supported by grants SAF2007-62378, FIS PI070111 and FIS FIS PI060264.Peer reviewe
Disruption of thalamocortical activity in schizophrenia models: relevance to antipsychotic drug action
Non-competitive NMDA receptor antagonists are widely used as pharmacological models of schizophrenia due to their ability to evoke the symptoms of the illness. Likewise, serotonergic hallucinogens, acting on 5-HT2A receptors, induce perceptual and behavioural alterations possibly related to psychotic symptoms. The neurobiological basis of these alterations is not fully elucidated. Data obtained in recent years revealed that the NMDA receptor antagonist phencyclidine (PCP) and the serotonergic hallucinogen 1-(2,5-dimethoxy-4-iodophenyl-2-aminopropane; DOI) produce a series of common actions in rodent prefrontal cortex (PFC) that may underlie psychotomimetic effects. Hence, both agents markedly disrupt PFC function by altering pyramidal neuron discharge (with an overall increase) and reducing the power of low frequency cortical oscillations (LFCO; < 4 Hz). In parallel, PCP increased c-fos expression in excitatory neurons of various cortical areas, the thalamus and other subcortical structures, such as the amygdala. Electrophysiological studies revealed that PCP altered similarly the function of the centromedial and mediodorsal nuclei of the thalamus, reciprocally connected with PFC, suggesting that its psychotomimetic properties are mediated by an alteration of thalamocortical activity (the effect of DOI was not examined in the thalamus). Interestingly, the observed effects were prevented or reversed by the antipsychotic drugs clozapine and haloperidol, supporting that the disruption of PFC activity is intimately related to the psychotomimetic activity of these agents. Overall, the present experimental model can be successfully used to elucidate the neurobiological basis of schizophrenia symptoms and to examine the potential antipsychotic activity of new drugs in development.Supported by the Innovative Medicines Initiative Joint Undertaking (IMI) under Grant Agreement No. 115008 (NEWMEDS). IMI is a public–private partnership between the European Union and the European Federation of Pharmaceutical Industries and Associations. Support from the following grants is also acknowledged: SAF 2012-35183 (Ministry of Economy and Competitiveness and European Regional Development Fund), PI09/1245 and PI12/00156 (PN de I+D+I 2008-2011, ISCIII-Subdireccion General de Evaluación y Fomento de la Investigación
cofinanced by the European Regional Development Fund. ‘Una manera de hacer Europa’) and Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM (P82, 11INT3). Support from the Generalitat de Catalunya (SGR20093) is also acknowledged. P.C. is supported by the Researcher Stabilization Program of the Health Department of the Generalitat de Catalunya. M.R. is recipient of an
IDIBAPS fellowship.Peer reviewe
- …
