16 research outputs found

    MPSalsa: A Finite Element Computer Program For Reacting Flow Problems Part 1 - Theoretical Development

    No full text
    The theoretical background for the finite element computer program, MPSalsa, is presented in detail. MPSalsa is designed to solve laminar, low Mach number, two- or three-dimensional incompressible and variable density reacting fluid flows on massively parallel computers, using a Petrov-Galerkin finite element formulation. The code has the capability to solve coupled fluid flow, heat transport, multicomponent species transport, and finite-rate chemical reactions, and to solve coupled multiple Poisson or advection-diffusion-reaction equations. The program employs the CHEMKIN library to provide a rigorous treatment of multicomponent ideal gas kinetics and transport. Chemical reactions occurring in the gas phase and on surfaces are treated by calls to CHEMKIN and SURFACE CHEMKIN, respectively. The code employs unstructured meshes, using the EXODUS II finite element database suite of programs for its input and output files. MPSalsa solves both transient and steady flows by using fully impli..

    Gangs, displaced, and group-based aggression

    Get PDF
    Many urban areas experienced an alarming growth of gang activity and violence during the end of the 20th and the beginning of the 21st centuries. Gang members, motivated by various factors, commit a variety of different types of violent acts towards rivals and other targets. Our focus involves instances of displaced aggression, which generally refers to situations in which aggression is targeted towards individuals who have either not themselves committed an offense against the aggressor (s), or who provide an offense that is too mild to justify the aggression levels that are expressed towards them. We discuss how social–psychological mechanisms and models of two types of displaced aggression might help explain some aspects of the retaliatory behavior that is expressed by members of street gangs. We also propose general techniques that have the potential to reduce such aggressive behavior

    Mutant p53 interactome identifies nardilysin as a p53R273H-specific binding partner that promotes invasion

    No full text
    The invasiveness of tumour cells depends on changes in cell shape, polarity and migration. Mutant p53 induces enhanced tumour metastasis in mice, and human cells overexpressing p53R273H have aberrant polarity and increased invasiveness, demonstrating the ‘gain of function’ of mutant p53 in carcinogenesis. We hypothesize that p53R273H interacts with mutant p53-specific binding partners that control polarity, migration or invasion. Here we analyze the p53R273H interactome using stable isotope labelling by amino acids in cell culture and quantitative mass spectrometry, and identify at least 15 new potential mutant p53-specific binding partners. The interaction of p53R273H with one of them—nardilysin (NRD1)—promotes an invasive response to heparin binding–epidermal growth factor-like growth factor that is p53R273H-dependant but does not require Rab coupling protein or p63. Advanced proteomics has thus allowed the detection of a new mechanism of p53-driven invasion

    Diacylglycerol kinase α controls RCP-dependent integrin trafficking to promote invasive migration

    Get PDF
    Inhibition of αvβ3 integrin or expression of oncogenic mutants of p53 promote invasive cell migration by enhancing endosomal recycling of α5β1 integrin under control of the Rab11 effector Rab-coupling protein (RCP). In this paper, we show that diacylglycerol kinase α (DGK-α), which phosphorylates diacylglycerol to phosphatidic acid (PA), was required for RCP to be mobilized to and tethered at the tips of invasive pseudopods and to allow RCP-dependent α5β1 recycling and the resulting invasiveness of tumor cells. Expression of a constitutive-active mutant of DGK-α drove RCP-dependent invasion in the absence of mutant p53 expression or αvβ3 inhibition, and conversely, an RCP mutant lacking the PA-binding C2 domain was not capable of being tethered at pseudopod tips. These data demonstrate that generation of PA downstream of DGK-α is essential to connect expression of mutant p53s or inhibition of αvβ3 to RCP and for this Rab11 effector to drive the trafficking of α5β1 that is required for tumor cell invasion through three-dimensional matrices

    CTF meeting 2012: Translation of the basic understanding of the biology and genetics of NF1, NF2, and schwannomatosis toward the development of effective therapies

    No full text
    The neurofibromatoses (NF) are autosomal dominant genetic disorders that encompass the rare diseases NF1, NF2, and schwannomatosis. The NFs affect more people worldwide than Duchenne muscular dystrophy and Huntington's disease combined. NF1 and NF2 are caused by mutations of known tumor suppressor genes (NF1 and NF2, respectively). For schwannomatosis, although mutations in SMARCB1 were identified in a subpopulation of schwannomatosis patients, additional causative gene mutations are still to be discovered. Individuals with NF1 may demonstrate manifestations in multiple organ systems, including tumors of the nervous system, learning disabilities, and physical disfigurement. NF2 ultimately can cause deafness, cranial nerve deficits, and additional severe morbidities caused by tumors of the nervous system. Unmanageable pain is a key finding in patients with schwannomatosis. Although today there is no marketed treatment for NF-related tumors, a significant number of clinical trials have become available. In addition, significant preclinical efforts have led to a more rational selection of potential drug candidates for NF trials. An important element in fueling this progress is the sharing of knowledge. For over 20 years the Children's Tumor Foundation has convened an annual NF Conference, bringing together NF professionals to share novel findings, ideas, and build collaborations. The 2012 NF Conference held in New Orleans hosted over 350 NF researchers and clinicians. This article provides a synthesis of the highlights presented at the conference and as such, is a "state-of-the-field" for NF research in 2012. © 2014 Wiley Periodicals, Inc.status: publishe
    corecore