173 research outputs found
Definition and evolution of quantum cellular automata with two qubits per cell
Studies of quantum computer implementations suggest cellular quantum computer
architectures. These architectures can simulate the evolution of quantum
cellular automata, which can possibly simulate both quantum and classical
physical systems and processes. It is however known that except for the trivial
case, unitary evolution of one-dimensional homogeneous quantum cellular
automata with one qubit per cell is not possible. Quantum cellular automata
that comprise two qubits per cell are defined and their evolution is studied
using a quantum computer simulator. The evolution is unitary and its linearity
manifests itself as a periodic structure in the probability distribution
patterns.Comment: 13 pages, 4 figure
A review of wildland fire spread modelling, 1990-present 3: Mathematical analogues and simulation models
In recent years, advances in computational power and spatial data analysis
(GIS, remote sensing, etc) have led to an increase in attempts to model the
spread and behvaiour of wildland fires across the landscape. This series of
review papers endeavours to critically and comprehensively review all types of
surface fire spread models developed since 1990. This paper reviews models of a
simulation or mathematical analogue nature. Most simulation models are
implementations of existing empirical or quasi-empirical models and their
primary function is to convert these generally one dimensional models to two
dimensions and then propagate a fire perimeter across a modelled landscape.
Mathematical analogue models are those that are based on some mathematical
conceit (rather than a physical representation of fire spread) that
coincidentally simulates the spread of fire. Other papers in the series review
models of an physical or quasi-physical nature and empirical or quasi-empirical
nature. Many models are extensions or refinements of models developed before
1990. Where this is the case, these models are also discussed but much less
comprehensively.Comment: 20 pages + 9 pages references + 1 page figures. Submitted to the
International Journal of Wildland Fir
Cellular Automata Models of Road Traffic
In this paper, we give an elaborate and understandable review of traffic
cellular automata (TCA) models, which are a class of computationally efficient
microscopic traffic flow models. TCA models arise from the physics discipline
of statistical mechanics, having the goal of reproducing the correct
macroscopic behaviour based on a minimal description of microscopic
interactions. After giving an overview of cellular automata (CA) models, their
background and physical setup, we introduce the mathematical notations, show
how to perform measurements on a TCA model's lattice of cells, as well as how
to convert these quantities into real-world units and vice versa. The majority
of this paper then relays an extensive account of the behavioural aspects of
several TCA models encountered in literature. Already, several reviews of TCA
models exist, but none of them consider all the models exclusively from the
behavioural point of view. In this respect, our overview fills this void, as it
focusses on the behaviour of the TCA models, by means of time-space and
phase-space diagrams, and histograms showing the distributions of vehicles'
speeds, space, and time gaps. In the report, we subsequently give a concise
overview of TCA models that are employed in a multi-lane setting, and some of
the TCA models used to describe city traffic as a two-dimensional grid of
cells, or as a road network with explicitly modelled intersections. The final
part of the paper illustrates some of the more common analytical approximations
to single-cell TCA models.Comment: Accepted for publication in "Physics Reports". A version of this
paper with high-quality images can be found at: http://phdsven.dyns.cx (go to
"Papers written"
Fundamental Building Blocks for The Design of A Single-electron Nanoelectronic Processor
92-100Nanoelectronics, Single electron, Memory, Fredkin gateA single-electron random access memory array (RAM) and a single-electron universal Fredkin gate are designed and simulated. The universality of the Fredkin gate in combination with the RAM gives the potential of the realization of an elementary single-electron nanoelectronic processor
Current characteristics of defective GNR nanoelectronic devices
The most promising Graphene structures for the development of nanoelectronics and sensor applications are Graphene nanoribbons (GNRs). GNRs with perfect lattices have been extensively investigated in the research literature; however, fabricated GNRs may still suffering from lattice flaws, the possible effect of which, on the operation of the circuitry comprised by GNR based devices, has not attracted significant interest. In this paper, we investigate the effect of lattice defects on the operational behavior of GNRs using the Non-Equilibrium Green's function (NEGF) method combined with tight-binding Hamiltonians targeting to the resulting nanoelectronic devices and circuits functionalities. We focus on butterfly-shaped GNRs, which have been proven to successfully function as switches that can be used as building blocks for simple Boolean gates and logic circuits. Analyses of the most common defects, namely the single and double vacancies, have been adequately performed. The effect of these vacancies was investigated by inserting them in various places and concentrations on the corresponding GNR based nano-devices. The computation results indicate the effect on lattice defects on the important operational device parameters including the leakage current, ION/IOFF and, finally, current density, which will determine the viability of GNR computing circuits.Postprint (published version
MULTIPLE QUANTUM WALKERS ON THE LINE USING HYBRID COINS: A POSSIBLE TOOL FOR QUANTUM SEARCH
In this paper discrete quantum walks with different coins used for odd and even time steps are studied. These coins are called hybrid. The calculation results are compared with the most frequently used coin, the Hadamard transform. Furthermore, quantum walks on the line which involve two or more quantum walkers with hybrid coins are studied. Quantum walks with entangled walkers and hybrid coins are also studied. The results of these calculations show that the proposed types of quantum walks can be used for quantum search, because the walker can be directed towards preferred directions and can also be confined in certain segments of the line
A reprogrammable graphene nanoribbon-based logic gate
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this article, taking into consideration the exceptional technological properties of a unique 2-D material, namely Graphene, we are envisioning its usage as the structure material of a non-back-gated re-programmable switching device. The proposed topology is analyzed in depth, not only by verifying its operation and re-programmability as a 2-input XOR , 3-input XOR and 3-input Majority gate, but also by examining its computing performance in terms of area, delay and power dissipation. More specifically, we are utilizing L-shaped Graphene Nanoribbons (GNRs) to develop comb-shaped Graphene based switching devices. These devices are in position with effective programming through biasing to design any combinatorial circuit as resulting from the aforementioned universal set of Boolean gates. The resulting figures of merit regarding the area with a universal footprint of 2.53 nm2 for every gate independently of the number of inputs, the propagation delay with 2.05×10-2ps and, last but not least, the power dissipation with only 10.204 nW for the gates with greater number of inputs, are quite encouraging and promising. Moreover, the ability of the proposed topology to pave the way towards the implementation of basic circuits has been further investigated, by demonstrating an example of a 1-bit full adder cell and its sufficient operation arriving from the corresponding successful SPICE simulation results.Peer ReviewedPostprint (author's final draft
- …
