957 research outputs found
Radiotelemetry Of Heart Rates From Free-Ranging Gulls
A lightweight radiotelemetry system with a range of 80 km was used to monitor heart rate from free-ranging Herring Gulls on flights of up to 20 km. Heart rate varied from 130 beats/min in a resting bird to 625 beats/min for sustained flight. Soaring birds showed rates similar to those of birds sitting quietly on the ground. Simultaneous records of telemetered heart rate and intraspecific conflict on the nesting island revealed that cardiac acceleration preceded overt visual communication. Intensely aggressive behavior was accompanied by heart rates approaching those of sustained flight. Heart rate as a measure of metabolic cost indicates that the gull\u27s behavioral adaptations for long-distance flight, food location and intraspecific communication result in major energy savings
Tracking radar studies of bird migration
The application of tracking radar for determining the flight paths of migratory birds is discussed. The effects produced by various meteorological parameters are described. Samples of radar scope presentations obtained during tracking studies are presented. The characteristics of the radars and their limitations are examined
Unimpaired Attentional Disengagement and Social Orienting in Children With Autism
Visual attention is often hypothesized to play a causal role in the development of autism spectrum disorder (ASD). Because attention shapes perception, learning, and social interaction, early deficits in attention could substantially affect the development of other perceptual and cognitive abilities. Here we test two key attentional phenomena thought to be disrupted in autism: attentional disengagement and social orienting. We find in a free-viewing paradigm that both phenomena are present in high-functioning children with ASD (n = 44, ages 5–12 years) and are identical in magnitude to those in age- and IQ-matched typical children (n = 40). Although these attentional processes may malfunction in other circumstances, our data indicate that high-functioning children with ASD do not suffer from across-the-board disruptions of either attentional disengagement or social orienting. Combined with mounting evidence that other attentional abilities are largely intact, it seems increasingly unlikely that disruptions of core attentional abilities lie at the root of ASD.Ellison Medical FoundationMassachusetts Institute of Technology. Simons Center for the Social BrainEunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.) (Award F32-HD075427
Fast Optimal Transport Averaging of Neuroimaging Data
Knowing how the Human brain is anatomically and functionally organized at the
level of a group of healthy individuals or patients is the primary goal of
neuroimaging research. Yet computing an average of brain imaging data defined
over a voxel grid or a triangulation remains a challenge. Data are large, the
geometry of the brain is complex and the between subjects variability leads to
spatially or temporally non-overlapping effects of interest. To address the
problem of variability, data are commonly smoothed before group linear
averaging. In this work we build on ideas originally introduced by Kantorovich
to propose a new algorithm that can average efficiently non-normalized data
defined over arbitrary discrete domains using transportation metrics. We show
how Kantorovich means can be linked to Wasserstein barycenters in order to take
advantage of an entropic smoothing approach. It leads to a smooth convex
optimization problem and an algorithm with strong convergence guarantees. We
illustrate the versatility of this tool and its empirical behavior on
functional neuroimaging data, functional MRI and magnetoencephalography (MEG)
source estimates, defined on voxel grids and triangulations of the folded
cortical surface.Comment: Information Processing in Medical Imaging (IPMI), Jun 2015, Isle of
Skye, United Kingdom. Springer, 201
Electrophysiological correlates of high-level perception during spatial navigation
We studied the electrophysiological basis of object recognition by recording scalp\ud
electroencephalograms while participants played a virtual-reality taxi driver game.\ud
Participants searched for passengers and stores during virtual navigation in simulated\ud
towns. We compared oscillatory brain activity in response to store views that were targets or\ud
nontargets (during store search) or neutral (during passenger search). Even though store\ud
category was solely defined by task context (rather than by sensory cues), frontal ...\ud
\u
Moderate threat causes longer lasting disruption to processing in anxious individuals
Anxiety is associated with increased attentional capture by threat. Previous studies have used simultaneous or briefly separated (<1 s) presentation of threat distractors and target stimuli. Here, we tested the hypothesis that high trait anxious participants would show a longer time window within which distractors cause disruption to subsequent task processing, and that this would particularly be observed for stimuli of moderate or ambiguous threat value. A novel temporally separated emotional distractor task was used. Face or house distractors were presented for 250 ms at short (∼1.6 s) or long (∼3 s) intervals prior to a letter string comprising Xs or Ns. Trait anxiety was associated with slowed identification of letter strings presented at long intervals after face distractors with part surprise/part fear expressions. In other words, these distractors had an impact on high anxious individuals' speed of target identification seconds after their offset. This was associated with increased activity in the fusiform gyrus and amygdala and reduced dorsal anterior cingulate recruitment. This pattern of activity may reflect impoverished recruitment of reactive control mechanisms to damp down stimulus-specific processing in subcortical and higher visual regions. These findings have implications for understanding how threat-related attentional biases in anxiety may lead to dysfunction in everyday settings where stimuli of moderate, potentially ambiguous, threat value such as those used here are fairly common, and where attentional disruption lasting several seconds may have a profound impact
Enhanced Processing of Threat Stimuli under Limited Attentional Resources
The ability to process stimuli that convey potential threat, under conditions of limited attentional resources, confers adaptive advantages. This study examined the neurobiology underpinnings of this capacity. Employing an attentional blink paradigm, in conjunction with functional magnetic resonance imaging, we manipulated the salience of the second of 2 face target stimuli (T2), by varying emotionality. Behaviorally, fearful T2 faces were identified significantly more than neutral faces. Activity in fusiform face area increased with correct identification of T2 faces. Enhanced activity in rostral anterior cingulate cortex (rACC) accounted for the benefit in detection of fearful stimuli reflected in a significant interaction between target valence and correct identification. Thus, under conditions of limited attention resources activation in rACC correlated with enhanced processing of emotional stimuli. We suggest that these data support a model in which a prefrontal “gate” mechanism controls conscious access of emotional information under conditions of limited attentional resources
Neural correlates of enhanced visual short-term memory for angry faces: An fMRI study
Copyright: © 2008 Jackson et al.Background: Fluid and effective social communication requires that both face identity and emotional expression information are encoded and maintained in visual short-term memory (VSTM) to enable a coherent, ongoing picture of the world and its players. This appears to be of particular evolutionary importance when confronted with potentially threatening displays of emotion - previous research has shown better VSTM for angry versus happy or neutral face identities.Methodology/Principal Findings: Using functional magnetic resonance imaging, here we investigated the neural correlates of this angry face benefit in VSTM. Participants were shown between one and four to-be-remembered angry, happy, or neutral faces, and after a short retention delay they stated whether a single probe face had been present or not in the previous display. All faces in any one display expressed the same emotion, and the task required memory for face identity. We find enhanced VSTM for angry face identities and describe the right hemisphere brain network underpinning this effect, which involves the globus pallidus, superior temporal sulcus, and frontal lobe. Increased activity in the globus pallidus was significantly correlated with the angry benefit in VSTM. Areas modulated by emotion were distinct from those modulated by memory load.Conclusions/Significance: Our results provide evidence for a key role of the basal ganglia as an interface between emotion and cognition, supported by a frontal, temporal, and occipital network.The authors were supported by a Wellcome Trust grant (grant number 077185/Z/05/Z) and by BBSRC (UK) grant BBS/B/16178
Uneven integration for perception and action cues in children’s working memory
We examined the development of visual cue integration in a desktop working-memory task using boxes with different visual action cues (opening actions) and perceptual surface cues (colours, monochromatic textures, or images of faces). Children had to recall which box held a hidden toy, based on (a) the action cue, (b) the surface cue, or (c) a conjunction of the two. Results from three experiments show a set of asymmetries in children's integration of action and surface cues. The 18–24-month-olds disregarded colour in conjunction judgements with action; 30–36-month-olds used colour but disregarded texture. Images of faces were not disregarded at either age. We suggest that 18–24-month-olds' disregard of colour, seen previously in reorientation tasks (Hermer & Spelke, 1994), may represent a general phenomenon, likened to uneven integration between the dorsal and ventral streams in early development
Behavioral states may be associated with distinct spatial patterns in electrocorticogram
To determine if behavioral states are associated with unique spatial electrocorticographic (ECoG) patterns, we obtained recordings with a microgrid electrode array applied to the cortical surface of a human subject. The array was constructed with the intent of extracting maximal spatial information by optimizing interelectrode distances. A 34-year-old patient with intractable epilepsy underwent intracranial ECoG monitoring after standard methods failed to reveal localization of seizures. During the 8-day period of invasive recording, in addition to standard clinical electrodes a square 1 × 1 cm microgrid array with 64 electrodes (1.25 mm separation) was placed on the right inferior temporal gyrus. Careful review of video recordings identified four extended naturalistic behaviors: reading, conversing on the telephone, looking at photographs, and face-to-face interactions. ECoG activity recorded with the microgrid that corresponded to these behaviors was collected and ECoG spatial patterns were analyzed. During periods of ECoG selected for analysis, no electrographic seizures or epileptiform patterns were present. Moments of maximal spatial variance are shown to cluster by behavior. Comparisons between conditions using a permutation test reveal significantly different spatial patterns for each behavior. We conclude that ECoG recordings obtained on the cortical surface with optimal high spatial frequency resolution reveal distinct local spatial patterns that reflect different behavioral states, and we predict that similar patterns will be found in many if not most cortical areas on which a microgrid is placed
- …