93 research outputs found

    Pumpless Extracorporeal Hemadsorption Technique (pEHAT) : A Proof-of-Concept Animal Study

    Get PDF
    Background: Extracorporeal hemadsorption eliminates proinflammatory mediators in critically ill patients with hyperinflammation. The use of a pumpless extracorporeal hemadsorption technique allows its early usage prior to organ failure and the need for an additional medical device. In our animal model, we investigated the feasibility of pumpless extracorporeal hemadsorption over a wide range of mean arterial pressures (MAP). Methods: An arteriovenous shunt between the femoral artery and femoral vein was established in eight pigs. The hemadsorption devices were inserted into the shunt circulation; four pigs received CytoSorb® and four Oxiris® hemadsorbers. Extracorporeal blood flow was measured in a range between mean arterial pressures of 45–85 mmHg. Mean arterial pressures were preset using intravenous infusions of noradrenaline, urapidil, or increased sedatives. Results: Extracorporeal blood flows remained well above the minimum flows recommended by the manufacturers throughout all MAP steps for both devices. Linear regression resulted in CytoSorb® blood flow [mL/min] = 4.226 × MAP [mmHg] − 3.496 (R-square 0.8133) and Oxiris® blood flow [mL/min] = 3.267 × MAP [mmHg] + 57.63 (R-square 0.8708), respectively. Conclusion: Arteriovenous pumpless extracorporeal hemadsorption resulted in sufficient blood flows through both the CytoSorb® and Oxiris® devices over a wide range of mean arterial blood pressures and is likely an intriguing therapeutic option in the early phase of septic shock or hyperinflammatory syndromes

    Hydrocortisone therapy for patients with septic shock

    Get PDF
    Background Hydrocortisone is widely used in patients with septic shock even though a survival benefit has been reported only in patients who remained hypotensive after fluid and vasopressor resuscitation and whose plasma cortisol levels did not rise appropriately after the administration of corticotropin. Methods In this multicenter, randomized, double-blind, placebo-controlled trial, we assigned 251 patients to receive 50 mg of intravenous hydrocortisone and 248 patients to receive placebo every 6 hours for 5 days; the dose was then tapered during a 6-day period. At 28 days, the primary outcome was death among patients who did not have a response to a corticotropin test. Results Of the 499 patients in the study, 233 (46.7%) did not have a response to corticotropin (125 in the hydrocortisone group and 108 in the placebo group). At 28 days, there was no significant difference in mortality between patients in the two study groups who did not have a response to corticotropin (39.2% in the hydrocortisone group and 36.1% in the placebo group, P=0.69) or between those who had a response to corticotropin (28.8% in the hydrocortisone group and 28.7% in the placebo group, P=1.00). At 28 days, 86 of 251 patients in the hydrocortisone group (34.3%) and 78 of 248 patients in the placebo group (31.5%) had died (P=0.51). In the hydrocortisone group, shock was reversed more quickly than in the placebo group. However, there were more episodes of superinfection, including new sepsis and septic shock. Conclusions Hydrocortisone did not improve survival or reversal of shock in patients with septic shock, either overall or in patients who did not have a response to corticotropin, although hydrocortisone hastened reversal of shock in patients in whom shock was reversed. (ClinicalTrials.gov number, NCT00147004 [ClinicalTrials.gov] .)Peer reviewedPublisher PD

    High resolution propagation-based lung imaging at clinically relevant X-ray dose levels

    Get PDF
    Absorption-based clinical computed tomography (CT) is the current imaging method of choice in the diagnosis of lung diseases. Many pulmonary diseases are affecting microscopic structures of the lung, such as terminal bronchi, alveolar spaces, sublobular blood vessels or the pulmonary interstitial tissue. As spatial resolution in CT is limited by the clinically acceptable applied X-ray dose, a comprehensive diagnosis of conditions such as interstitial lung disease, idiopathic pulmonary fibrosis or the characterization of small pulmonary nodules is limited and may require additional validation by invasive lung biopsies. Propagation-based imaging (PBI) is a phase sensitive X-ray imaging technique capable of reaching high spatial resolutions at relatively low applied radiation dose levels. In this publication, we present technical refinements of PBI for the characterization of different artificial lung pathologies, mimicking clinically relevant patterns in ventilated fresh porcine lungs in a human-scale chest phantom. The combination of a very large propagation distance of 10.7 m and a photon counting detector with [Formula: see text] pixel size enabled high resolution PBI CT with significantly improved dose efficiency, measured by thermoluminescence detectors. Image quality was directly compared with state-of-the-art clinical CT. PBI with increased propagation distance was found to provide improved image quality at the same or even lower X-ray dose levels than clinical CT. By combining PBI with iodine k-edge subtraction imaging we further demonstrate that, the high quality of the calculated iodine concentration maps might be a potential tool for the analysis of lung perfusion in great detail. Our results indicate PBI to be of great value for accurate diagnosis of lung disease in patients as it allows to depict pathological lesions non-invasively at high resolution in 3D. This will especially benefit patients at high risk of complications from invasive lung biopsies such as in the setting of suspected idiopathic pulmonary fibrosis (IPF)

    Clinical Problems in the Hospitalized Parkinson's Disease Patient: Systematic Review

    Get PDF
    The problems Parkinson's disease (PD) patients encounter when admitted to a hospital, are known to be numerous and serious. These problems have been inventoried through a systematic review of literature on reasons for emergency and hospital admissions in PD patients, problems encountered during hospitalization, and possible solutions for the encountered problems using the Pubmed database. PD patients are hospitalized in frequencies ranging from 7 to 28% per year. PD/parkinsonism patients are approximately one and a half times more frequently and generally 2 to 14 days longer hospitalized than non-PD patients. Acute events occurring during hospitalization were mainly urinary infection, confusion, and pressure ulcers. Medication errors were also frequent adverse events. During and after surgery PD patients had an increased incidence of infections, confusion, falls, and decubitus, and 31% of patients was dissatisfied in the way their PD was managed. There are only two studies on medication continuation during surgery and one analyzing the effect of an early postoperative neurologic consultation, and numerous case reports, and opinionated views and reviews including other substitutes for dopaminergic medication intraoperatively. In conclusion, most studies were retrospective on small numbers of patients. The major clinical problems are injuries, infections, poor control of PD, and complications of PD treatment. There are many (un-researched) proposals for improvement. A substantial number of PD patients' admissions might be prevented. There should be guidelines concerning the hospitalized PD patients, with accent on early neurological consultation and team work between different specialities, and incorporating nonoral dopaminergic replacement therapy when necessary. © 2011 Movement Disorder Societ

    Pattern Recognition Analysis of Proton Nuclear Magnetic Resonance Spectra of Brain Tissue Extracts from Rats Anesthetized with Propofol or Isoflurane

    Get PDF
    BACKGROUND: General anesthesia is routinely used as a surgical procedure and its safety has been endorsed by clinical outcomes; however, its effects at the molecular level have not been elucidated. General anesthetics influence glucose metabolism in the brain. However, the effects of anesthetics on brain metabolites other than those related to glucose have not been well characterized. We used a pattern recognition analysis of proton nuclear magnetic resonance spectra to visualize the changes in holistic brain metabolic phenotypes in response to the widely used intravenous anesthetic propofol and the volatile anesthetic isoflurane. METHODOLOGY/PRINCIPAL FINDINGS: Rats were randomized into five groups (n = 7 each group). Propofol and isoflurane were administered to two groups each, for 2 or 6 h. The control group received no anesthesia. Brains were removed directly after anesthesia. Hydrophilic compounds were extracted from excised whole brains and measured by proton nuclear magnetic resonance spectroscopy. All spectral data were processed and analyzed by principal component analysis for comparison of the metabolite profiles. Data were visualized by plotting principal component (PC) scores. In the plots, each point represents an individual sample. The propofol and isoflurane groups were clustered separately on the plots, and this separation was especially pronounced when comparing the 6-h groups. The PC scores of the propofol group were clearly distinct from those of the control group, particularly in the 6-h group, whereas the difference in PC scores was more subtle in the isoflurane group and control groups. CONCLUSIONS/SIGNIFICANCE: The results of the present study showed that propofol and isoflurane exerted differential effects on holistic brain metabolism under anesthesia

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    On Social Attitudes: A Preliminary Report

    No full text
    This paper describes our preliminary investigations into identifying, and ultimately formalising, the wide range of social problem solving behaviour which can occur in multiagent systems. In particular, this work examines the different agent attitudes which may prevail in social problem solving, the different types of individual and social commitment which flow from these attitudes, how and why these attitudes come to prevail, and how the attitudes lead to overall systems with radically different properties and characteristics

    Modelling Social Interaction Attitudes in Multi-Agent Systems

    No full text
    Abstract 2 Most autonomous agents are situated in a social context and need to interact with other agents (both human and artificial) to complete their problem solving objectives. Such agents are usually capable of performing a wide range of actions and engaging in a variety of social interactions. Faced with this variety of options, an agent must decide what to do. There are many potential decision making functions that could be employed to make the choice. Each such function will have a different effect on the success of the individual agent and of the overall system in which it is situated. To this end, this thesis examines agents ’ decision making functions to ascertain their likely properties and attributes. A novel framework for characterising social decision making is presented which provides explicit reasoning about the potential benefits of the individual agent, particular sub-groups of agents or the overall system. This framework enables multi-farious social interaction attitudes to be identified and defined; ranging from the purely self-interested to the purely altruistic. In particular, however, the focus is on the spectrum of socially responsible agent behaviours in which agents attempt to balance their own needs with those of the overall system. Such behaviour aims to ensure that both the agent and the overall system perform well
    corecore