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Abstract

Background: Sepsis, a leading cause of morbidity and mortality, is not a homogeneous disease but rather a
syndrome encompassing many heterogeneous pathophysiologies. Patient factors including genetics predispose to
poor outcomes, though current clinical characterizations fail to identify those at greatest risk of progression and
mortality.

Methods: The Community Acquired Pneumonia and Sepsis Outcome Diagnostic study enrolled 1,152 subjects with
suspected sepsis. We sequenced peripheral blood RNA of 129 representative subjects with systemic inflammatory
response syndrome (SIRS) or sepsis (SIRS due to infection), including 78 sepsis survivors and 28 sepsis non-survivors
who had previously undergone plasma proteomic and metabolomic profiling. Gene expression differences were
identified between sepsis survivors, sepsis non-survivors, and SIRS followed by gene enrichment pathway analysis.
Expressed sequence variants were identified followed by testing for association with sepsis outcomes.

Results: The expression of 338 genes differed between subjects with SIRS and those with sepsis, primarily reflecting
immune activation in sepsis. Expression of 1,238 genes differed with sepsis outcome: non-survivors had lower
expression of many immune function-related genes. Functional genetic variants associated with sepsis mortality
were sought based on a common disease-rare variant hypothesis. VPS9D1, whose expression was increased in sepsis
survivors, had a higher burden of missense variants in sepsis survivors. The presence of variants was associated with
altered expression of 3,799 genes, primarily reflecting Golgi and endosome biology.

Conclusions: The activation of immune response-related genes seen in sepsis survivors was muted in sepsis non-
survivors. The association of sepsis survival with a robust immune response and the presence of missense variants
in VPS9D1 warrants replication and further functional studies.

Trial registration: ClinicalTrials.gov NCT00258869. Registered on 23 November 2005.
Background
Sepsis is a heterogeneous syndrome that leads to significant
morbidity and mortality. There are more than 750,000
cases per year in the United States [1] and up to 19 million
cases per year worldwide [2]. Despite the availability of
potent antibiotics and intensive care, mortality remains at
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20% to 30% [1,3], accounting for up to 56% of all in-
hospital deaths [4]. Moreover, the majority of in-hospital
sepsis deaths occur in patients with mild clinical disease
that would not warrant early goal-directed therapy [4]. That
mild initial clinical illness progresses to severe sepsis and
death despite appropriate clinical care highlights host re-
sponses to sepsis that differ between survivors and non-
survivors. Even among survivors, there remains a high rate
of morbidity and mortality after hospital discharge identify-
ing another unmet prognostic need [5].
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In 1992, an international consensus conference defined
sepsis as the systemic inflammatory response (SIRS) to the
presence of infection [6]. Standardizing this definition en-
abled providers to rapidly identify and treat the condition.
It also facilitated research with improved dissemination
and application of information. However, the simplicity of
this definition masks the tremendous complexity of the
condition. Sepsis is not a single disease, but rather a highly
heterogeneous syndrome that is the net result of host and
pathogen interactions triggering networks of biochemical
mediators and inflammatory cascades in multiple organ
systems. It is influenced by many variables including
pathogen, site of infection, clinical interventions, host gen-
etics, age, and baseline health. As such, therapeutic trials
have been largely disappointing in part because a one-
size-fits-all approach fails to recognize the heterogeneity
among patients with sepsis. This has stifled sepsis clinical
research as evidenced by the small number of sepsis-
focused clinical trials, comprising only 3% of all infectious
disease-related research registered in ClinicalTrials.gov
[7]. However, interventions considered failures may in ac-
tuality be highly effective in selected subpopulations. Un-
derstanding the spectrum of sepsis pathophysiology in a
heterogeneous human patient population is a necessary
first step to redefining this syndrome and individualizing
sepsis management [8].
We previously performed comprehensive, integrated ana-

lyses of clinical and molecular measurements in sepsis to
identify and prioritize sepsis pathways in survivors and non-
survivors without the bias of a priori mechanistic hypoth-
eses [9-13]. This included the derivation of a signature, de-
rived from clinical, metabolome, and proteome data, that
differentiated sepsis from SIRS of other etiologies and im-
proved the prediction of survival and death in patients with
sepsis [11]. Moreover, the proteome and metabolome were
similar in survivors regardless of initial sepsis severity, and
yet uniquely different from non-survivors, generating the
hypothesis that initial host molecular response is a superior
prognostic indicator compared to clinical staging criteria.
Here, in a final orthogonal analysis, we sought unbiased as-
sociations with peripheral blood transcription and expressed
nucleotide variants. We again hypothesized that an agnostic
systems biology approach would reveal important biological
associations informing sepsis diagnosis and prognosis. This
analysis revealed many pathways as relevant to sepsis diag-
nosis, particularly immune activation: Both SIRS and sepsis
non-survivors had lower gene expression levels across mul-
tiple immune activation pathways. An additional hypothesis
was that the transcriptome included expressed sequence
variants associated with sepsis outcome under the common
disease-rare variant premise. Indeed, we observed the pres-
ence of expressed sequence variants in VPS9D1 to be associ-
ated with sepsis survival. However, no associations with
mitochondrial gene variants were identified despite previous
observations that mitochondrial biology is important for
sepsis outcomes. These results highlight the complex role of
immune function in sepsis, indicating differences between
survivors and non-survivors. Moreover, we identified genetic
variants associated with sepsis outcome. Their discovery of-
fers a potential explanation for the underlying heterogeneity
behind sepsis outcomes that often confounds available clin-
ical prognostic tools.

Methods
Patient selection and clinical data collection
The CAPSOD study was approved by the Institutional
Review Boards of the National Center for Genome Re-
sources, Duke University Medical Center, Durham Vet-
erans Affairs Medical Center and Henry Ford Health
Systems and filed at ClinicalTrials.gov (NCT00258869).
This research conformed to the Helsinki Declaration. In-
clusion criteria were presentation of adults at the ED
with known or suspected acute infection and presence
of at least two SIRS criteria (tympanic temperature
<36°C or >38°C, tachycardia >90 beats per minute, tach-
ypnea >20 breaths per minute or PaCO2 <32 mmHg,
white cell count <4,000 cells/mm3 or >12,000 cells/mm3

or >10% neutrophil band forms) [10,12,13]. Exclusion
criteria were as previously described [10,12,13]. Patients
were enrolled from 2005 through 2009 and written in-
formed consent was obtained by all study participants or
their legal designates. Adults aged 17 years or older were
included for this analysis.
Patient demographics, past medical history, physical

examination, and APACHE II were recorded at enroll-
ment using online electronic data capture (Prosanos Inc.,
Harrisburg, PA, USA) [10,12-15]. Microbiologic evalu-
ation was as clinically indicated and in some cases was
supplemented by multiplex PCR to identify bloodstream
infections (The LightCycler® SeptiFast M GRADE Test,
Version 2.0; Roche, Basel, Switzerland) [13].
All subject records were adjudicated at least 28 days

after enrollment by a physician with emergency medi-
cine training (SWG) to determine whether presenting
symptoms and signs were due to infection, etiologic
agent, site of infection, patient outcome, and time to
outcome [10,13]. A second physician with infectious dis-
eases training (ELT) independently adjudicated a 10%
sample, selected at random. Agreement regarding infec-
tion classification was high with κ = 0.82, exceeding the
0.80 threshold considered ‘almost perfect agreement’
[10,16]. All adjudications were performed prior to the
generation of any transcriptome data.
Subjects were classified into one of five groups that

reflected the conventional concept of sepsis progression
as a pyramid [1,4]: (1) Uncomplicated sepsis (sepsis with-
out disease progression); (2) Severe sepsis (severe sepsis at
t0 or progression to severe sepsis by day 3); (3) Septic
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shock (septic shock at t0 or progression to septic shock by
day 3); (4) Sepsis non-survivors (sepsis of any severity
at the time of enrollment and death within 28 days); and
(5) SIRS (≥2 SIRS criteria without evidence of infection).
Based on experimental results presented here, it was de-
termined that the sepsis survivors (uncomplicated sepsis,
severe sepsis, and septic shock) had similar transcriptional
profiles. Consequently, they were recoded as a single ‘sep-
sis survivor’ group.
CAPSOD was designed to support a variety of research

questions. Therefore, although 1,152 subjects had enrolled
in CAPSOD by the time of this analysis, 129 subjects were
chosen for the work presented here. This number was based
on several factors. First, these samples were matched to
metabolomic and proteomic data [11], where a sample size
of 30 subjects in each of the five groups was calculated to
provide 80% power to test associations with survival/death.
Although the initially selected group consisted of 150 sub-
jects, subjects were excluded from transcriptome and
expressed sequence variant analysis due to lack of PAXgene
RNA tubes, insufficient RNA, or poor quality RNA. The
final number of subjects per group was 28 sepsis non-
survivors, 23 SIRS survivors, and 78 sepsis survivors.

Sample collection and preparation
Blood collections occurred at t0, corresponding to the day of
enrollment upon presentation to the ED. Whole blood was
collected in PAXgene RNA tubes (Qiagen, CA, USA) to
stabilize intracellular RNA and subsequently stored at −80°C
until use. RNA was prepared using a PaxGene Blood RNA
kit (Qiagen) according to the manufacturer’s instructions.
Nucleic acids were pelleted by centrifugation, washed, and
treated with proteinase K. Residual cell debris was removed
by centrifugation through a column. Samples were equili-
brated with ethanol and total RNA was isolated using a silica
membrane. Following washing and DNase I treatment,
RNA was eluted. RNA integrity was determined by 2100
Bioanalyzer microfluids using RNA 600 Nano kit (Agilent),
averaging 7.6 (standard deviation 1.7). RNA samples were
stored at −80°C.

RNA sequencing
mRNA sequencing libraries were prepared from total RNA
using the Illumina mRNA-Seq Sample Prep Kit (Illumina,
catalog # RS‐100‐0801), according to the manufacturer’s
recommended protocols and as we have previously pub-
lished [17]. Briefly, mRNA was isolated using oligo-dT
magnetic Dynabeads (Invitrogen). Random-primed cDNA
was synthesized and fragments were 3’ adenylated. Illumina
DNA oligonucleotide sequencing adapters were ligated and
350 to 500 bp fragments were selected by gel electrophor-
esis. cDNA sequencing libraries were amplified by 18 cycles
of PCR and quality was assessed with Bioanalyzer. cDNA li-
braries were stored at −20°C.
CAPSOD experimental samples were sequenced with-
out multiplexing on Illumina GAIIx instruments (54-cycle
singleton reads). This yielded 13.4 million reads, totaling
718.4 Mbp of sequence, and nine-fold average coverage.
Base calling was performed using Illumina Pipeline soft-
ware v1.4, except for 14 samples performed with v1.3. Ap-
proximately 500 million high quality reads were generated
per sample. Data can be accessed via the Gene Expression
Omnibus repository (GSE63042).
Sequence quality analysis was performed on the raw data

using FastQC version 0.10.1, assessing per-base and overall
sequence quality, nucleotide composition, and uncalled
bases. Quality trimming and adapter clipping were per-
formed using Trimmomatic version 0.32, trimming trailing
bases below Phred quality score of 20 (which corresponds
to a 99% base call accuracy rate), and discarding clipped
reads shorter than 25 bp. FastQC was used to re-assess the
integrity of the clipped reads prior to subsequent mapping
and analysis. On average, over 93% of the sequences had a
mean Phred base call quality of 20 or higher after trimming.
The post-trimming uncalled base rate was 0.09%. The Illu-
mina iGenomes UCSC hg19 human reference genome and
annotation was used as a reference, downloaded March
2013. Clipped reads were mapped to the hg19 genome
using Tophat version 2.0.7, and assembled with Cufflinks
version 2.0.2, all with default parameter settings. The aver-
age mapping rate was 77.7%. Read counts for each gene
were obtained with HTSeq version 0.5.4, specifically the
intersection-nonempty mode of htseq-count. SAM/BAM
conversions, sorting, indexing, and marking of PCR dupli-
cates were performed with SAMtools version 0.1.18 and
Picard version 1.83.
For variant analysis, sequence data were aligned to the

GRCh37.p5 human reference genome using STAR [18].
Read alignments were processed with the Genome Analysis
Tool Kit [19] (GATK) version 3.1. Duplicate reads were re-
moved and single nucleotide polymorphisms (SNP) and in-
sertion/deletion (INDEL) discovery and genotyping was
performed on all samples individually using the GATK
HaplotypeCaller producing a standard variant call format
(VCF) [20]. Resulting nuclear variants were hard filtered to
keep variants with a Phred scaled quality score of 20 or
higher (a measure of quality of DNA sequence) [21,22]. To
address issues with varying coverage in the mitochondrial
genome, samples were filtered so that only 91 samples with
at least 85% of the mitochondrial genome covered by 16
reads or more were included in the final variant analysis.
Further, mitochondrial variants were only analyzed if they
were identified in 10 reads or more.
Variants were annotated with the Rapid Understanding of

Nucleotide variant Effect Software (RUNES v1.0) [23].
RUNES incorporates data from ENSEMBL’s Variant Effect
Predictor software [24], and produces comparisons to NCBI
dbSNP, known disease mutations from the Human Gene
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Mutation Database [25], and performs additional in silico
prediction of variant consequences using RefSeq and
ENSEMBL gene annotations. RUNES categorizes each vari-
ant according to American College of Medical Genetics
and Genomics recommendations for reporting sequence
variation [7,8] as well as an allele frequency derived from
the Children’s Mercy Hospital Center for Pediatric Gen-
omic Medicine Variant Warehouse database [23]. As mul-
tiple transcripts exist for VPS9D1, the locations of each
variant with respect to the cDNA and protein for each
identified transcript are presented in Additional file 1.
Statistical analyses
Overlaid kernel density estimates, Mahalanobis distances,
univariate distribution results, correlation coefficients of
pair wise sample comparisons, unsupervised principal
components analysis (by Pearson product–moment cor-
relation), and Ward hierarchal clustering of Pearson prod-
uct–moment correlations were performed using log2-
transformed data as described [17] using JMP Genomics
6.1 (SAS Institute). ANOVA was performed between sep-
sis groups, with a 7.5% FDR correction based on the
Storey method [17,26,27]. FDR calculations used for all
other analyses employed the Benjamini-Hochberg method
[28]. ANOVA was also performed for VPS9D1 variants in
the sepsis survivors and non-survivors. The patients were
separated based on whether they had the expressed vari-
ant or not. Subjects without adequate sequencing cover-
age across the variant were excluded from the analysis.
Pathway gene list enrichment analysis was performed
using the ToppFun algorithm of the ToppGene Suite [29].
VCF files for sepsis survivors and non-survivors were

analyzed using the SNP and Variation Suite v8.1.4 (Gold-
enHelix). To assess the association of genetic variation
with sepsis outcomes we conducted three separate ana-
lyses of two groupings of detected variants. The groupings
of variants were: (1) all variants within 5 kb of annotated
genes; and 2) only variants likely to have a functional im-
pact by limiting to non-synonymous, in/del, and frame-
shift variants in exons as identified using RefSeq 63 (v.
2014-02-16). We first examined the presence or absence
of variants within a gene and its association with sepsis
outcomes using a Fisher’s Exact Test for Binary Predictors
(Fisher’s binary). Associations were also sought between
the total number of variants per gene and sepsis non-
survival by correlation, t-test, and regression analysis. For
rare variant analysis we used the Combined Multivariate
and Collapsing method and Hotelling T Squared Test
with a minor allele frequency bin of <0.01 [30]. To create
the allele frequency bins for grouping 1 we used the 1 k
genome all populations MAF [31] and for grouping 2 we
used the NHLBI exome variant server all populations
MAF [32].
Results
Study design and clinical synopsis
The Community Acquired Pneumonia and Sepsis Outcome
Diagnostics (CAPSOD) study was an observational trial en-
rolling subjects with community-acquired sepsis or pneu-
monia (ClinicalTrials.gov NCT00258869) (Figure 1A). Its
focus was to define sepsis biology and to identify diagnostic
and prognostic biomarkers in sepsis utilizing comprehensive
clinical information and bioinformatic, metabolomic, prote-
omic, and mRNA sequencing technologies (Figure 1B). Sub-
jects with suspected sepsis were enrolled in the emergency
departments of Henry Ford Health System (Detroit, MI,
USA), Duke University Medical Center (Durham, NC,
USA), and the Durham Veterans Affairs Medical Center
(Durham, NC, USA) from 2005 to 2009 by which time
1,152 subjects were enrolled [10-13] (Figure 2). Some
enrolled subjects were later determined not to have sepsis,
but rather a non-infectious systemic inflammatory response
syndrome (SIRS). Infection status and 28-day mortality were
independently adjudicated by a board-certified clinician
followed by a second, confirmatory adjudication of 10% of
cases (κ= 0.82) as previously described [10,12,13]. An inde-
terminate infection status in 259 subjects led to their exclu-
sion (Figure 2). Twenty-eight day mortality in the remaining
population of 893 was low (5.9%). Five subgroups were se-
lected for mRNA sequencing: (1) Uncomplicated sepsis
(n = 24); (2) Progression to severe sepsis within 3 days
(n = 21); (3) Progression to septic shock within 3 days (n =
33); (4) Sepsis non-survivors at 28 days (n = 28); and (5) Pa-
tients with SIRS (n = 23). Subjects for each group were
chosen to match non-survivors based on age, gender, race,
enrollment site, and microbiological etiology (Table 1). As
CAPSOD was an observational study, clinical care was not
standardized and was determined by individual providers.
Moreover, treatment administered to patients prior to en-
rollment (for example, self-administered, prescribed by out-
patient providers, given by emergency medical services, or
given in the ED) were not recorded and therefore were not
controlled for in subsequent analyses.

Peripheral blood gene expression analysis
Transcription in venous blood of patients at ED arrival was
evaluated by sequencing of stabilized mRNA, which was
chosen for its dynamic range, excellent correlation to qPCR,
and capture of in vivo transcription early in sepsis evolution
[33]. Furthermore, RNAseq permits the identification of
expressed nucleotide variants, providing an opportunity to
study genetic variation associated with phenotypes of inter-
est [34-36]. Leukocyte number and differential cell counts
were similar across groups (Table 1). mRNA sequencing for
129 subjects to an average depth of 13.5 million reads/sam-
ple yielded relative levels of transcription of 30,792 genes (of
which 18,078 mRNAs were detected in >50% of subjects).
Similar to the proteome and metabolome [11], ANOVA did
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Figure 1 A systems survey of sepsis survival. (A) Schematic representing the different trajectories enrolled subjects might take. X-axis represents time
(not to scale), emphasizing the illness progresses from local to systemic infection prior to clinical presentation (t0). The green line is flat only to distinguish
subjects without infection, although these individuals could also have the full spectrum of clinical illness severity. Blue lines represent subjects with sepsis
of different severities, all of whom survive at 28 days. This is in contrast to subjects with sepsis who die within 28 days, independent of initial sepsis severity.
(B) Analytical plan for the CAPSOD cohort including previously published metabolome and proteome [11]. Metabolomic and proteomic analyses were
performed on samples obtained at t0 and 24 h later. Transcriptomic analysis was performed on samples obtained at t0.
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not find any significant differences in gene expression be-
tween uncomplicated sepsis, severe sepsis, and septic shock
groups, which consequently combined to form the ‘Sepsis
Survivor’ group. This created three groups for comparison:
Sepsis Survivor (n = 78), Sepsis Non-survivor (n = 28), and
SIRS control (n = 23), as had been utilized for prior metabo-
lomic and proteomic analyses [11].
Differences in transcript abundance were measured be-

tween groups. There were 2,455 significant differences be-
tween all pairwise comparisons (Figure 3 and Additional
file 2) based on ANOVA with a 7.5% false discovery rate
(FDR), chosen to impart a greater degree of specificity.
These 2,455 expression differences included 315 unanno-
tated loci. The number of genes in each pairwise compari-
son is depicted in Figure 3A along with an expression heat
map in Figure 3B. The first focus was to distinguish sepsis
from SIRS, which is a particularly important diagnostic deci-
sion made at a patient’s first clinical contact. We therefore
combined all sepsis survivors and sepsis non-survivors to
create a Sepsis category, which was then compared to SIRS.
There were 338 genes with significantly different expression,
the majority of which (317/338; 94%) were upregulated in
subjects with sepsis, indicating a robust increase in gene
expression. Gene enrichment and pathway analysis was
performed with the ToppFun algorithm [29]. The highly sig-
nificant pathways differentiating sepsis and SIRS included
response to wounding, defense response, and the immune
or inflammatory response. Among the genes downregulated
in sepsis, there were few significant pathways. One notable
example of decreased gene expression in sepsis was PROC
(Protein C), a key regulator of fibrin clot formation [37,38].
This plasma protein, often depleted in severe sepsis, was the
basis for recombinant activated protein C as the only drug
approved for the treatment of severe sepsis. Subsequent tri-
als failed to replicate the beneficial effects, prompting its
removal from the market [39]. PROC expression was de-
creased to a similar degree in sepsis survivors and sepsis
non-survivors when compared to SIRS.
Prior metabolomic and proteomic studies suggested broad

differences exist in the biochemistry of sepsis survivors and
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Figure 2 CONSORT flow chart of patient enrollment and selection. The planned study design was to analyze 30 subjects each with uncomplicated
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quantity in some cases decreased the number available per group. The analysis population includes 78 sepsis survivors, 28 sepsis non-survivors, and 23 SIRS
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non-survivors. As such, differential gene expression and
pathway analysis was repeated, focusing only on sepsis survi-
vors as compared to SIRS (all of whom survived in the
analysis population). This identified 1,358 differentially
expressed genes, of which 1,262 were annotated. As before,
the majority were increased in sepsis (1,317/1,358; 97%).
Pathway analysis revealed similar results to the comparison
of all sepsis and SIRS including immune-related categories
such as immune response, defense response, response to
wounding, and innate immune response (Figure 3C and
Additional file 3). The increased expression of immune
function-related pathways is consistent with the host need
to combat infection. Moreover, subjects in this sepsis cohort
were categorized by the type of pathogen: Gram positive or
Gram negative (Table 1). A comparison of gene expression
in these groups revealed that no genes met the cutoff for
statistical significance, recapitulating the plasma proteomic
and metabolomic findings in this comparison [11].
Among subjects with sepsis, another important clinical

challenge is distinguishing those who will respond to stand-
ard treatment from those at highest risk of sepsis progres-
sion and mortality. We therefore focused on the 1,238 genes
differentially expressed (1,099 annotated) between sepsis
survivors and sepsis non-survivors. The majority (1,113/
1,238; 90%) showed increased expression in sepsis survivors
(Additional file 2). Pathway analysis revealed similar findings
to the comparison of SIRS and sepsis. Specifically, sepsis
survivors had increased expression of genes involved in the
immune response including response to interferon-gamma,
the defense response, and the innate immune response
(Figure 3C and Additional file 3). Despite the infectious eti-
ology of their illness, sepsis non-survivors had a muted im-
mune response as measured by peripheral blood gene
expression. Although the difference in total leukocyte count
approached statistical significance (P value 0.06 by t-test),
the differential cell count was similar between survivors and
non-survivors (P value 0.56 for % neutrophils by t-test)
(Table 1).

Genetic associations with sepsis outcome
We next sought genetic associations with sepsis outcomes
that might underpin the proteomic, metabolomic, and
transcription changes in the CAPSOD cohort, potentially
providing a unifying mechanism of sepsis death or sur-
vival. Genotypes were determined at each nucleotide in
the expressed mRNA sequences of the 78 sepsis survivors
and 28 sepsis non-survivors (homozygous reference, het-
erozygous variant, homozygous variant, not called).
Genetic associations were initially sought between sepsis

outcome and mRNA variants of all types and allele fre-
quencies mapping within 5 kb of an exon. These criteria
were met by 417,570 variants in 18,303 genes. To narrow



Table 1 Clinical and demographic information for the analysis population

Clinical variable SIRS Sepsis survivors Sepsis non-survivors

n 23 78 28

Age (years) 64.9 ± 14.4 56.1 ± 18.0 67.6 ± 17.0

Gender (% Male) 34.8% 59.0% 60.7%

Race (B/W/O) 16/6/1 47/26/5 21/6/1

APACHE II 16.8 ± 7.7 14.7 ± 6.6 21.3 ± 7.1

Pathogena

S. aureus N/A 20 (26%) 5 (18%)

S. pneumoniae N/A 20 (26%) 4 (14%)

Enterobacteriaceae N/A 23 (29%) 3 (11%)

Total leukocyte countb 11.2 (8.8, 13.5) 14.6 (9.7, 18.7) 15.1 (10.4, 21.9)

% Neutrophils 77.0 (73.5, 83.3) 85.0 (82.0, 91.0) 87.4 (82.0, 92.8)

% Lymphocytes 13.0 (7.6, 15.8) 7.0 (4.0, 11.0) 8.0 (4.2, 11.8)

% Monocytes 7.1 (4.4, 9.8) 5.0 (3.0, 8.0) 4.5 (2.0, 6.0)

Co-morbidities

Alcohol abuse 17.4% 17.9% 10.7%

Neoplastic disease 13.0% 6.4% 21.4%

Diabetes 30.4% 32.1% 35.7%

Congestive heart failure 0% 6.4% 14.3%

Chronic kidney disease 26.1% 21.8% 25.0%

Chronic liver disease 8.7% 5.1% 21.4%

Immunosuppression 0% 6.4% 7.1%

Smoker 21.7% 30.8% 25.0%

Data presented as mean ± standard deviation. aOther identified pathogens include: Candida albicans, Clostridium difficile, Coagulase-negative Staphylococcus,
Enterococcus species, Legionella, Listeria monocytogenes, Mycoplasma pneumoniae, Pseudomonas aeruginosa, Streptococcus non-pneumoniae (agalactiae, pyogenes,
viridans group). No significant differences in pathogen frequency were identified between Sepsis Survivors and Sepsis Non-survivors using Fisher’s exact test.
Subjects were counted more than once in cases of polymicrobial infection.
bReported as cells x 109/liter, median (1st quartile, 3rd quartile). Leukocyte differential percentages exclude one SIRS subject, nine Sepsis Survivors, and two Sepsis
Deaths for whom differential data were not available.
B/W/O: black/white/other; N/A: not applicable.
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this number, three methods were utilized. The first col-
lapsed heterozygous and homozygous variants in each
gene, and scored binary associations of variant-associated
genes with the sepsis outcome groups using the numeric
Fisher’s Exact Test for Binary Predictors (Fisher’s binary).
Second, associations were sought between the number of
variants per gene and sepsis non-survival by correlation,
t-test, and regression analysis. Finally, the Combined
Multivariate and Collapsing method and Hotelling T
Squared Test were applied [30]. No significant gene asso-
ciations with sepsis outcome were found (FDR <0.10).
We then looked for associations between sepsis out-

come and mRNA variants likely to have functional effects,
specifically 20,168 potentially phenotype-causing variants
mapping to 6,793 coding domains. Our hypothesis was
that common metabolomic, proteomic, or transcriptional
phenotypes of sepsis non-survival might be causally re-
lated to multiple rare variants on a gene-by-gene basis.
One gene, Vacuolar Protein Sorting 9 Domain-containing
gene 1 (VPS9D1), showed significant associations between
potentially functional mRNA variants and sepsis survival
(Figure 4).
VPS9D1 (transcript NM_004913) variants were signifi-

cantly associated with sepsis outcomes as measured by
Fisher’s binary (−log10 P value 4.48, FDR = 0.07, odds ratio
0.08) and regression (−log10 P value 5.03, FDR = 0.01, odds
ratio 0.09). After excluding subjects with inadequate se-
quence coverage, nine unique non-synonymous substitu-
tions were identified. Since any given subject could have
more than one of these unique variants, we identified 46
variants in 36 subjects (Table 2). Forty-four VPS9D1 vari-
ants were identified in sepsis survivors and two variants in
sepsis non-survivors. Of the nine variants, the A >C substi-
tution at chr16:89775776 (NC_000016.9 (GRCh37.p13) g.
89775776 A >C; NM_004913.2:c.1456A >C; NP_004904.2:
p.Thr486Pro) occurred most commonly in the CAPSOD
cohort. It was heterozygous in two of 26 (7.7%) sepsis non-
survivors compared to 30 of 74 (40.5%) sepsis survivors
(Table 2). The remaining eight non-synonymous variants
were found less frequently, each occurring in two or fewer
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subjects and only in the sepsis survivor group. Seven vari-
ants were very rare (minor allele frequency, MAF <0.002)
and two were rare (MAF <0.02). Although expression of
VPS9D1 was significantly decreased in sepsis non-survivors,
this did not markedly decrease the number of comparisons
between nucleotide variants and sepsis outcomes.
The biological consequences of these variants are un-

known. To determine if these variants were associated with
gene expression changes, we defined two new analysis pop-
ulations: subjects with and without a variant in VPS9D1.
Genes with differential expression in these groups were
Arg305Ser
Arg305Thr

Arg289Thr
Arg289Gly

VPS9D1

Figure 4 Protein structure of VPS9D1 showing approximate location
identified followed by pathway analysis. Individuals with
variants in VPS9D1 differed in expression of 3,799 genes,
representing many different pathways (Figure 5; Additional
file 4). Among the most highly significant were those re-
lated to the Golgi, endosome, nucleoside processing, and
protein conjugation including ubiquitination, consistent
with the role of VPS9-domain containing proteins in Rab5
activation [40]. VPS9D1 expression was itself higher in sub-
jects with the variant than those without but failed to reach
the FDR threshold. As noted above, VPS9D1 expression
was significantly higher in sepsis survivors than in sepsis
VPS

Leu580Met

Arg537Gln

Thr486Pro

Arg392Trp

Asp377Asn

of variants associated with sepsis survival.



Table 2 Expressed sequence variants identified in VPS9D1

Chromosome (Start:Stop) Variant type Reference allele Variant allele cDNA change Protein change Variant impact Reference SNP ID Sepsis non-survivors Sepsis survivors

16 (89774899:89774899) Substitution G T c.1738C > A p.Leu580Met Non-synonymous rs182342705 0/20 0/69

16 (89775352:89775352) Substitution C T c.1610G > A p.Arg537Gln Non-synonymous 0/6 1/27

16 (89775776:89775776) Substitution T G c.1456A > C p.Thr486Pro Non-synonymous 2/26 30/74

16 (89777078:89777078) Substitution G A c.1174C > T p.Arg392Trp Non-synonymous rs56288641 0/20 2/67

16 (89777123:89777123) Substitution C T c.1129G > A p.Asp377Asn Non-synonymous rs148694296 0/23 1/68

16 (89777306:89777306) Substitution G T c.946C > A p.Pro316Thr Non-synonymous 0/25 2/76

16 (89777337:89777337) Substitution T A c.915A > T p.Arg305Ser Non-synonymous 0/15 2/67

16 (89777338:89777338) Substitution C G c.914G > C p.Arg305Thr Non-synonymous 0/16 2/66

16 (89777386:89777386) Substitution C G c.866G > C p.Arg289Thr Non-synonymous 0/23 2/74

16 (89777387:89777387) Substitution T C c.865A > G p.Arg289Gly Non-synonymous 0/23 2/74

A given subject may harbor more than one variant. Multiple transcripts and corresponding proteins exist for VPS9D1. cDNA and protein changes are based on VPS9D1 transcript NM_004913.2 and protein NP_004904.2.
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Figure 5 Expression of VPS9D1. VPS9D1 is represented by two
different genetic loci: XLOC_011354 (Cufflinks Transcript ID
TCONS_00032132; RefSeq ID NM_004913) and XLOC_010886 (Cufflinks
Transcript ID TCONS_00030416; RefSeq ID NM_004913). The former
demonstrated greater sequencing coverage and is presented here.
Results for XLOC_010886 were similar (data not shown). (A) Level of
VPS9D1 expression in sepsis survivors (n = 74) and sepsis non-survivors
(n = 26). (B) Level of VPS9D1 expression as a function of the VPS9D1
reference (n = 64) or variant sequence (n = 36) among subjects with
adequate coverage. (C) Volcano plot depicting differentially expressed
genes as a function of the VPS9D1 reference or variant allele.
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non-survivors. This was also true of many RAS oncogene
family members, including RAB5C (Additional file 2). The
association of VPS9D1 variants with differential gene ex-
pression and pathways which this gene is itself associated
with supports the biological relevance of these variants.

Mitochondrial gene associations
Given the metabolomic evidence of mitochondrial ener-
getic dysfunction in sepsis death [11,41-43], genetic as-
sociations were sought between sepsis outcome and
mRNA variants that mapped to mitochondrial genes in
the germline and mitochondrial (mt) genome. Genotypes
were determined for nucleotides in mitochondrial tran-
scripts where at least 85% of the mitochondrial genome
was represented at a sequence depth of >16-fold (refer-
ence allele, variant allele, heteroplasmy). Twenty sepsis
non-survivors and 58 sepsis survivors met these criteria.
The total number of variants per sample was similar be-
tween groups (38.0 variants per sepsis non-survivor, 33.6
per sepsis survivor, and 37.7 per SIRS survivor of which
there were 13). The number of variants possibly associ-
ated with altered protein function was also similar be-
tween groups (7.5 per sepsis non-survivor, 8.5 per sepsis
survivor, and 9.6 per SIRS survivor). There were no sig-
nificant differences in the presence of rare alleles (MAF
<1%) per sample between groups, nor in the number of
variants per gene. We also looked at MT haplogroups
and sub-haplogroups focusing specifically on haplogroup
H and the MT-ND1 T4216C variant, which have previ-
ously been associated with sepsis survival [44,45]. Using
the HaploGrep online tool [46], we observed a similar
haplogroup H frequency in sepsis survivors (47.2%) and
non-survivors (45.8%). Likewise, no differences in MT-
ND1 T4216C variant frequency were observed.
Maternally-inherited mitochondria are not a uniform

population. Moreover, mitochondria are prone to a high
mutation rate. As a result, there is heterogeneity in the
mitochondrial population at the cell and organism levels,
known as heteroplasmy. Heteroplasmy has the potential to
mitigate or aggravate mitochondrial disease-associated mu-
tations depending on the representation of affected mito-
chondria in relevant tissues [47]. We hypothesized that
heteroplasmy may be associated with sepsis non-survival.
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We therefore measured the frequency and pattern of het-
eroplasmy in the complete mitochondrial genome in sepsis
survivors compared to sepsis non-survivors. This was deter-
mined by variant read counts followed by data visualization
in Integrated Genomics Viewer. No difference between sep-
sis non-survivors and sepsis survivors was identified. In
addition, a more stringent analysis of 41 well-characterized
points of heteroplasmy [48,49] revealed no significant differ-
ences between sepsis survivors and non-survivors. The sen-
sitivity of these genetic comparisons, however, was greatly
limited by sample size.

Discussion
This analysis of peripheral blood mRNA sequences revealed
key genes, pathways, and genetic variants associated with
SIRS, sepsis survival, and sepsis non-survival. Sepsis (SIRS
due to infection) was distinguished from SIRS (without in-
fection) by increased expression of many genes involved in
the immune and defense response, vesicle biology, and
apoptosis. A similar increase in gene expression was
observed in sepsis survivors compared to sepsis non-
survivors, particularly interferon γ-induced genes, immune
and defense response, cytokine pathways, antigen process-
ing and presentation, and protein kinase signaling. More-
over, expressed sequence variants in VPS9D1 were
significantly associated with sepsis outcomes.
Understanding host response to sepsis and how it differs

from a non-infectious SIRS illness has been a major focus
of research for some time. Likewise, great efforts have been
made to identify host factors associated with sepsis recovery
versus death. In recent years, tools have become available
to explore these questions comprehensively including gene
expression analysis [50-53], metabolomics [11,54,55], prote-
omics [11,56-58], microRNA analysis [59-61], as well as the
integration of these multi-omic approaches with compre-
hensive clinical features [11]. In contrast to previous work,
this study utilized mRNA sequencing, rather than microar-
rays, to characterize the transcriptome. In doing so, we
confirmed the importance of key biological pathways both
in the successful response to sepsis, which was observed to
be absent in SIRS without infection and muted in sepsis
non-survivors. The use of mRNA sequencing to define the
transcriptome also enabled the identification of expressed,
potentially function-affecting, nucleotide variants associated
with sepsis outcomes as well as an examination of allelic
imbalance associated with those variants. To our know-
ledge, applying this approach to sepsis is novel in humans.
Expression analysis identified many genes involved in im-

mune activation among sepsis survivors. Compared to sep-
sis survivors, subjects with SIRS and sepsis non-survivors
both demonstrated decreased activation of these immune
function-related genes. This muted response in SIRS was
not unexpected given the absence of infection. However,
the decreased representation of immune response in sepsis
non-survivors suggested an ineffective or maladaptive host
response to infection supporting previous observations that
late phases of sepsis are characterized by a higher microbio-
logical burden and death rate [62]. Interestingly, sepsis sur-
vivors were also distinguished by increased expression of
genes related to the mammalian target of rapamycin
(mTOR) pathway and autophagy - a mechanism critical for
organelle and mitochondrial recycling as well as selective
intracellular degradation of invading pathogens [63]. An-
other notable pathway expressed at higher levels in sepsis
survivors related to the receptor for advanced glycation
endproducts (RAGE) pathway and included the RAGE-
related genes S100A8, S100A9, S100A12, and formyl pep-
tide receptor 1 (FPR1). S100A8 and S100A9 are important
in NLRP3-inflammasome activation [64]. Supporting the
significance of the inflammasome in sepsis survivors, they
also exhibited increased expression of genes downstream
from inflammasome activation including interleukin-1 re-
ceptor 2 (IL1R2), IL18R1, and the IL-18 receptor accessory
protein (IL18RAP).
Assuming a rare variant - common phenotype hypothesis,

expressed nucleotide variants were sought that showed an
association with sepsis survival. Potentially functional vari-
ants in Vacuolar Protein Sorting 9 Domain-containing gene
1 (VPS9D1) were associated with sepsis outcome. VPS9D1,
whose expression was significantly higher in survivors com-
pared to non-survivors, encodes a VPS9 domain-containing
protein with ATP synthase and GTPase activator activity
[65]. VPS9 domains are highly conserved activators of Rab5
GTPase which regulates cell signaling through endocytosis
of intracellular receptors [40]. Nine non-synonymous substi-
tutions were identified in VPS9D1. The most common
VPS9D1 missense variant, p.Thr486Pro, was located in the
VPS9 domain. VPS9D1 has also been shown to interact with
GRB2 (growth factor receptor-bound factor 2) [66], which
was also more highly expressed in sepsis survivors and in
those with VPS9D1 variants. In T-cells, GRB2 functions as
an adaptor protein that binds SOS1 in response to growth
factors [67]. This results in activation of membrane-bound
Ras, promoting increased cell proliferation and survival.
Moreover, GRB2 functions in calcium-regulated signaling in
B-cells [68]. GRB2 has an alternatively spliced transcript that
encodes the GRB3-3 isoform. GRB3-3 lacks an SH2 domain
which normally suppresses proliferative signals, and as a re-
sult, GRB3-3 activates apoptosis via a dominant-negative
mechanism [69,70]. Both isoforms associate with heteroge-
neous nuclear ribonucleoprotein C and are modulated by
poly(U) RNA in the nucleus, where they are felt to perform
discrete functions [70]. Thus, upregulation of VPS9D1 and
concurrent VPS9D1 missence variants, combined with up-
regulation of GRB2 in sepsis survivors, presents a complex
interaction that balances increased cellular proliferation and
survival, B- and T-cell activation, and proapoptotic activity,
all of which are key processes in sepsis.
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It should be noted that gene expression changes de-
scribed in this report are based on peripheral blood cells
and may not reflect changes occurring at the tissue level
such as liver and muscle which are important in sepsis
outcomes [11]. Therefore, these findings should not be
construed to represent the host’s response in its totality.
Moreover, differences in gene expression between survi-
vors and non-survivors could reflect a confounding,
pre-morbid condition rather than sepsis-related biology,
a hypothesis with precedent as it relates to long-term
disability among sepsis survivors [71]. These concerns
are not expected to impact expressed genetic variant
identification since these are likely to be germline
changes. However, it is possible that variants in genes
expressed at a low level might escape our detection due
to inadequate coverage. Additional studies are therefore
needed to clarify the relationships between these vari-
ants and the survival/death molecular phenotypes. Spe-
cifically, these associations require replication in several,
larger cohorts containing patients from more homoge-
neous genetic backgrounds. Subjects were selected for
analysis primarily based on sepsis diagnosis, severity,
and outcome, which introduces the possibility of selec-
tion bias and underscores the need for validation in in-
dependent populations. In addition, the functional
consequences of the VPS9D1 missense variants should
be ascertained.

Conclusions
The CAPSOD cohort is an ethnically, demographically,
and clinically diverse population of subjects with early,
community-onset sepsis. In addition to clinical phenotyp-
ing, this population has been characterized at the molecu-
lar level including proteomics, metabolomics [11], and
now transcriptomics using RNA sequencing. Blood prote-
omics and metabolomics highlighted the changes occur-
ring at the system level whereas transcriptomics largely
reflected immune cell activity. We identified a more
robust immune response in sepsis as compared to SIRS
which was muted in sepsis non-survivors, even when con-
sidering a 28-day mortality endpoint. Genes encoding
expressed sequence variants that associated with sepsis
outcomes were sought. No statistically significant variants
in mitochondrial genes or in mitochondrial heteroplasmy
were identified. However,VPS9D1 contained variants that
were significantly more likely to occur in sepsis survivors.
Variants in VPS9D1 were themselves associated with al-
tered gene expression, affecting biological pathways which
VPS9D1 plays a known or putative role. This research
confirms prior findings implicating immune response as
important in the sepsis response. It also identifies genetic
variation in two genes, not previously implicated in sepsis,
that play potentially important roles in determining sepsis
outcome.
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Additional file 1: Location of VPS9D1 missense variants. Data
presented in Table 2 and in the manuscript are based on the bolded
transcripts. Nomenclature is based on Human Genome Variation Society
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Additional file 2: List of all statistically significant differentially
expressed genes between SIRS, Sepsis Survivor, and Sepsis
Non-survivor. Values presented are counts log2 (x + 1). * denotes
significantly different from SIRS. # denotes significantly different from
Sepsis Survivor. Yellow-highlighted cells indicate unannotated genes.

Additional file 3: Gene list enrichment analysis and candidate gene
prioritization based on functional annotations for clinical
categories. Top 50 pathways for each comparison are presented.
Comparisons include SIRS vs. Sepsis (including survivors and
non-survivors), SIRS vs. Sepsis Survivors, and Sepsis Survivors vs. Sepsis
Non-survivors.

Additional file 4: Gene list enrichment analysis and candidate gene
prioritization based on functional annotations for VPS9D1 variants.
Top 50 pathways are presented for genes differentially expressed
between subjects with sepsis who had a VPS9D1 variant (n = 36) and
those without (n = 64). Subjects with inadequate sequencing coverage
across the variant were removed from this analysis.
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