54 research outputs found

    Die Zellatmung: ein effizienter biologischer Prozess nicht ohne Risiken

    Get PDF
    The energy supplies of modern society seem to be necessarily associated with risks. In this paper, we address the question as to whether the efficient utilisation of energy in biological systems is also coupled to hazards. Most organisms oxidise highly reduced substrates with molecular oxygen in order to gain energy. In eukaryotes, this process takes place at the inner membrane of specialised organelles, the mitochondria. Interestingly, about 1% of the consumed oxygen molecules are reduced not to water, but to ROS (reactive oxygen species), which are deleterious to many macromolecules, including mitochondrial DNA. As a result, mitochondrial DNA mutations accumulate, in turn affecting the energy supply and inducing degeneration and ageing.Nach dem heutigen Stand der Technik scheint eine ausreichende Energieversorgung der Gesellschaft stets mit Risiken verbunden zu sein. Wir gehen in dem Artikel der Frage nach, ob auch biologische Systeme bei der Nutzung von Energie Risiken in Kauf nehmen. Zur effizienten Energiegewinnung nutzen Organismen meist Sauerstoff zur Oxidation energiereicher Substrate. In Eukaryonten erfolgt die Energiegewinnung vor allem an der inneren Membran von Mitochondrien. Etwa 1 % des verbrauchten Sauerstoffs wird dabei nicht zu Wasser, sondern zu ROS (reactive oxygen species, reaktive Sauerstoffspezies) reduziert, die unter anderem die mitochondriale DNA schädigen und Mutationen hervorrufen. Diese akkumulieren auf Dauer und führen zu einer Störung der Energiegewinnung, in deren Folge Degenerations- und Alterungsphänomene auftreten

    An exciton-polariton laser based on biologically produced fluorescent protein

    Get PDF
    We thank A. Clemens (TU Dresden, Germany) for technical support with protein preparation and C. Murawski (U St Andrews, UK) for support with TDAF deposition. We acknowledge support from the ERC Starting Grant ABLASE (640012), the Scottish Funding Council (via SUPA), the European Union Marie Curie Career Integration Grant (PCIG12-GA-2012-334407), studentship funding through the EPSRC CM-DTC (EP/L015110/1) and the EPSRC Hybrid Polaritonics program grant (EP/M025330/1). S.H. gratefully acknowledges support by the Royal Society and the Wolfson Foundation and M.S. gratefully acknowledges support from a MSCA IF (659213).Under adequate conditions, cavity-polaritons form a macroscopic coherent quantum state, known as polariton condensate (PC). Compared to Wannier-Mott polaritons in inorganic semiconductors, the localized Frenkel polaritons in organic emitter materials show weaker interaction with each other but stronger coupling to light, which recently enabled the first realization of a PC at room temperature. However, this required ultrafast optical pumping which limits the applications of organic PCs. Here, we demonstrate room-temperature PCs of cavity-polaritons in simple laminated microcavities filled with the biologically produced enhanced green fluorescent protein (eGFP). The unique molecular structure of eGFP prevents exciton annihilation even at high excitation densities, thus facilitating PCs under conventional nanosecond pumping. Condensation is clearly evidenced by a distinct threshold, an interaction-induced blueshift of the condensate, long-range coherence and the presence of a second threshold at higher excitation density which is associated with the onset of photon lasing.Publisher PDFPeer reviewe

    Nomenclature for kidney function and disease: report of a Kidney Disease:Improving Global Outcomes (KDIGO) Consensus Conference

    Get PDF
    The worldwide burden of kidney disease is rising, but public awareness remains limited, underscoring the need for more effective communication by stakeholders in the kidney health community. Despite this need for clarity, the nomenclature for describing kidney function and disease lacks uniformity. In June 2019, Kidney Disease: Improving Global Outcomes (KDIGO) convened a Consensus Conference with the goal of standardizing and refining the nomenclature used in the English language to describe kidney function and disease, and of developing a glossary that could be used in scientific publications. Guiding principles of the conference were that the revised nomenclature should be patient-centered, precise, and consistent with nomenclature used in the KDIGO guidelines. Conference attendees reached general consensus on the following recommendations: (i) to use "kidney" rather than "renal" or "nephro-" when referring to kidney disease and kidney function; (ii) to use "kidney failure" with appropriate descriptions of presence or absence of symptoms, signs, and treatment, rather than "end-stage kidney disease"; (iii) to use the KDIGO definition and classification of acute kidney diseases and disorders (AKD) and acute kidney injury (AKI), rather than alternative descriptions, to define and classify severity of AKD and AKI; (iv) to use the KDIGO definition and classification of chronic kidney disease (CKD) rather than alternative descriptions to define and classify severity of CKD; and (v) to use specific kidney measures, such as albuminuria or decreased glomerular filtration rate (GFR), rather than "abnormal" or "reduced" kidney function to describe alterations in kidney structure and function. A proposed 5-part glossary contains specific items for which there was general agreement. Conference attendees acknowledged limitations of the recommendations and glossary, but they considered standardization of scientific nomenclature to be essential for improving communication

    Repeated pulses of vertical methane flux recorded in glacial sediments from the southeast Bering Sea

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 26 (2011): PA2210, doi:10.1029/2010PA001993.There is controversy over the role of marine methane hydrates in atmospheric methane concentrations and climate change during the last glacial period. In this study of two sediment cores from the southeast Bering Sea (700 m and 1467 m water depth), we identify multiple episodes during the last glacial period of intense methane flux reaching the seafloor. Within the uncertainty of the radiocarbon age model, the episodes are contemporaneous in the two cores and have similar timing and duration as Dansgaard-Oeschger events. The episodes are marked by horizons of sediment containing 13C-depleted authigenic carbonate minerals; 13C-depleted archaeal and bacterial lipids, which resemble those found in ANME-1 type anaerobic methane oxidizing microbial consortia; and changes in the abundance and species distribution of benthic foraminifera. The similar timing and isotopic composition of the authigenic carbonates in the two cores is consistent with a region-wide increase in the upward flux of methane bearing fluids. This study is the first observation outside Santa Barbara Basin of pervasive, repeated methane flux in glacial sediments. However, contrary to the “Clathrate Gun Hypothesis” (Kennett et al., 2003), these coring sites are too deep for methane hydrate destabilization to be the cause, implying that a much larger part of the ocean's sedimentary methane may participate in climate or carbon cycle feedback at millennial timescales. We speculate that pulses of methane in these opal-rich sediments could be caused by the sudden release of overpressure in pore fluids that builds up gradually with silica diagenesis. The release could be triggered by seismic shaking on the Aleutian subduction zone caused by hydrostatic pressure increase associated with sea level rise at the start of interstadials.Support for this project was from the National Science Foundation Office of Polar Programs, United States Department of Energy, Oak Foundation, and MARUM at University of Bremen

    Die Zellatmung: ein effizienter biologischer Prozess nicht ohne Risiken

    No full text
    The energy supplies of modern society seem to be necessarily associated with risks. In this paper, we address the question as to whether the efficient utilisation of energy in biological systems is also coupled to hazards. Most organisms oxidise highly reduced substrates with molecular oxygen in order to gain energy. In eukaryotes, this process takes place at the inner membrane of specialised organelles, the mitochondria. Interestingly, about 1% of the consumed oxygen molecules are reduced not to water, but to ROS (reactive oxygen species), which are deleterious to many macromolecules, including mitochondrial DNA. As a result, mitochondrial DNA mutations accumulate, in turn affecting the energy supply and inducing degeneration and ageing.Nach dem heutigen Stand der Technik scheint eine ausreichende Energieversorgung der Gesellschaft stets mit Risiken verbunden zu sein. Wir gehen in dem Artikel der Frage nach, ob auch biologische Systeme bei der Nutzung von Energie Risiken in Kauf nehmen. Zur effizienten Energiegewinnung nutzen Organismen meist Sauerstoff zur Oxidation energiereicher Substrate. In Eukaryonten erfolgt die Energiegewinnung vor allem an der inneren Membran von Mitochondrien. Etwa 1 % des verbrauchten Sauerstoffs wird dabei nicht zu Wasser, sondern zu ROS (reactive oxygen species, reaktive Sauerstoffspezies) reduziert, die unter anderem die mitochondriale DNA schädigen und Mutationen hervorrufen. Diese akkumulieren auf Dauer und führen zu einer Störung der Energiegewinnung, in deren Folge Degenerations- und Alterungsphänomene auftreten

    Die Zellatmung: ein effizienter biologischer Prozess nicht ohne Risiken

    No full text
    The energy supplies of modern society seem to be necessarily associated with risks. In this paper, we address the question as to whether the efficient utilisation of energy in biological systems is also coupled to hazards. Most organisms oxidise highly reduced substrates with molecular oxygen in order to gain energy. In eukaryotes, this process takes place at the inner membrane of specialised organelles, the mitochondria. Interestingly, about 1% of the consumed oxygen molecules are reduced not to water, but to ROS (reactive oxygen species), which are deleterious to many macromolecules, including mitochondrial DNA. As a result, mitochondrial DNA mutations accumulate, in turn affecting the energy supply and inducing degeneration and ageing.Nach dem heutigen Stand der Technik scheint eine ausreichende Energieversorgung der Gesellschaft stets mit Risiken verbunden zu sein. Wir gehen in dem Artikel der Frage nach, ob auch biologische Systeme bei der Nutzung von Energie Risiken in Kauf nehmen. Zur effizienten Energiegewinnung nutzen Organismen meist Sauerstoff zur Oxidation energiereicher Substrate. In Eukaryonten erfolgt die Energiegewinnung vor allem an der inneren Membran von Mitochondrien. Etwa 1 % des verbrauchten Sauerstoffs wird dabei nicht zu Wasser, sondern zu ROS (reactive oxygen species, reaktive Sauerstoffspezies) reduziert, die unter anderem die mitochondriale DNA schädigen und Mutationen hervorrufen. Diese akkumulieren auf Dauer und führen zu einer Störung der Energiegewinnung, in deren Folge Degenerations- und Alterungsphänomene auftreten

    Tuning the Sensitivity of the PDR5 Promoter-Based Detection of Diclofenac in Yeast Biosensors

    Get PDF
    The commonly used drug diclofenac is an important environmental anthropogenic pollutant. Currently, detection of diclofenac is mainly based on chemical and physical methods. Here we describe a yeast biosensor that drives the diclofenac-dependent expression of a recombinant fluorescent protein from the authentic promoter of the PDR5 gene. This key component of the pleiotropic drug response encodes a multidrug transporter that is involved in cellular detoxification. We analyse the effects on diclofenac sensitivity of artificial PDR5 promoter derivatives in wild-type and various yeast mutant strains. This approach enabled us to generate sensor strains with elevated drug sensitivity

    Hydrophobin-Based Surface Engineering for Sensitive and Robust Quantification of Yeast Pheromones

    Get PDF
    Detection and quantification of small peptides, such as yeast pheromones, are often challenging. We developed a highly sensitive and robust affinity-assay for the quantification of the α-factor pheromone of Saccharomyces cerevisiae based on recombinant hydrophobins. These small, amphipathic proteins self-assemble into highly stable monolayers at hydrophilic-hydrophobic interfaces. Upon functionalization of solid supports with a combination of hydrophobins either lacking or exposing the α-factor, pheromone-specific antibodies were bound to the surface. Increasing concentrations of the pheromone competitively detached the antibodies, thus allowing for quantification of the pheromone. By adjusting the percentage of pheromone-exposing hydrophobins, the sensitivity of the assay could be precisely predefined. The assay proved to be highly robust against changes in sample matrix composition. Due to the high stability of hydrophobin layers, the functionalized surfaces could be repeatedly used without affecting the sensitivity. Furthermore, by using an inverse setup, the sensitivity was increased by three orders of magnitude, yielding a novel kind of biosensor for the yeast pheromone with the lowest limit of detection reported so far. This assay was applied to study the pheromone secretion of diverse yeast strains including a whole-cell biosensor strain of Schizosaccharomyces pombe modulating α-factor secretion in response to an environmental signal

    Sequential Processing of a Mitochondrial Tandem Protein: Insights into Protein Import in \u3ci\u3eSchizosaccharomyces pombe\u3c/i\u3e

    Get PDF
    The sequencing of the genome of Schizosaccharomyces pombe revealed the presence of a number of genes encoding tandem proteins, some of which are mitochondrial components. One of these proteins (pre-Rsm22- Cox11) consists of a fusion of Rsm22, a component of the mitochondrial ribosome, and Cox11, a factor required for copper insertion into cytochrome oxidase. Since in Saccharomyces cerevisiae, Cox11 is physically attached to the mitochondrial ribosome, it was suggested that the tandem organization of Rsm22-Cox11 is used to covalently tie the mitochondrial ribosome to Cox11 in S. pombe. We report here that pre-Rsm22-Cox11 is matured in two subsequent processing events. First, the mitochondrial presequence is removed. At a later stage of the import process, the Rsm22 and Cox11 domains are separated by cleavage of the mitochondrial processing peptidase at an internal processing site. In vivo data obtained using a tagged version of pre-Rsm22- Cox11 confirmed the proteolytic separation of Cox11 from the Rsm22 domain. Hence, the tandem organization of pre-Rsm22-Cox11 does not give rise to a persistent fusion protein but rather might be used to increase the import efficiency of Cox11 and/or to coordinate expression levels of Rsm22 and Cox11 in S. pombe
    corecore