200 research outputs found

    Dexamethasone-Induced Expression of Endothelial Mitogen-Activated Protein Kinase Phosphatase-1 Involves Activation of the Transcription Factors Activator Protein-1 and 3',5'-Cyclic Adenosine 5'-Monophosphate Response Element-Binding Protein and the Generation of Reactive Oxygen Species

    Get PDF
    We have recently identified the MAPK phosphatase (MKP)-1 as a novel mediator of the antiinflammatory properties of glucocorticoids (dexamethasone) in the human endothelium. However, nothing is as yet known about the signaling pathways responsible for the up-regulation of MKP-1 by dexamethasone in endothelial cells. Knowledge of the molecular basis of this new alternative way of glucocorticoid action could facilitate the identification of new antiinflammatory drug targets. Thus, the aim of our study was to elucidate the underlying molecular mechanisms. Using Western blot analysis, we found that dexamethasone rapidly activates ERK, c-jun Nterminal kinase (JNK), and p38 MAPK in human umbilical vein endothelial cells. By applying the kinase inhibitors PD98059 (MAPK kinase-1) and SP600125 (JNK), ERK and JNK were shown to be crucial for the induction of MKP-1. Using EMSA and a decoy oligonucleotide approach, the transcription factors activator protein-1 (activated by ERK and JNK) and cAMP response element-binding protein (activated by ERK) were found to be involved in the up-regulation of MKP-1 by dexamethasone. Interestingly, dexamethasone induces the generation of reactive oxygen species (measured by dihydrofluorescein assay), which participate in the signaling process by triggering JNK activation. Our work elucidates a novel alternative mechanism for transducing antiinflammatory effects of glucocorticoids in the human endothelium. Thus, our study adds valuable information to the efforts made to find new antiinflammatory principles utilized by glucocorticoids. This might help to gain new therapeutic options to limit glucocorticoid side effects and to overcome resistance

    A single F153Sβ3 mutation causes constitutive integrin αIIbβ3 activation in a variant form of Glanzmann thrombasthenia

    Get PDF
    This report identifies a novel variant form of the inherited bleeding disorder Glanzmann thrombasthenia, exhibiting only mild bleeding in a physically active individual. The platelets cannot aggregate ex vivo with physiologic agonists of activation, although microfluidic analysis with whole blood displays moderate ex vivo platelet adhesion and aggregation consistent with mild bleeding. Immunocytometry shows reduced expression of αIIbβ3 on quiescent platelets that spontaneously bind/store fibrinogen, and activation-dependent antibodies (ligand-induced binding site-319.4 and PAC-1) report β3 extension suggesting an intrinsic activation phenotype. Genetic analysis reveals a single F153Sβ3 substitution within the βI-domain from a heterozygous T556C nucleotide substitution of ITGB3 exon 4 in conjunction with a previously reported IVS5(+1)G\u3eA splice site mutation with undetectable platelet messenger RNA accounting for hemizygous expression of S153β3. F153 is completely conserved among β3 of several species and all human β-integrin subunits suggesting that it may play a vital role in integrin structure/function. Mutagenesis of αIIb-F153Sβ3 also displays reduced levels of a constitutively activated αIIb-S153β3 on HEK293T cells. The overall structural analysis suggests that a bulky aromatic, nonpolar amino acid (F,W)153β3 is critical for maintaining the resting conformation of α2- and α1-helices of the βI-domain because small amino acid substitutions (S,A) facilitate an unhindered inward movement of the α2- and α1-helices of the βI-domain toward the constitutively active αIIbβ3 conformation, while a bulky aromatic, polar amino acid (Y) hinders such movements and restrains αIIbβ3 activation. The data collectively demonstrate that disruption of F153β3 can significantly alter normal integrin/platelet function, although reduced expression of αIIb-S153β3 may be compensated by a hyperactive conformation that promotes viable hemostasis

    Nanotube Action between Human Mesothelial Cells Reveals Novel Aspects of Inflammatory Responses

    Get PDF
    A well-known role of human peritoneal mesothelial cells (HPMCs), the resident cells of the peritoneal cavity, is the generation of an immune response during peritonitis by activation of T-cells via antigen presentation. Recent findings have shown that intercellular nanotubes (NTs) mediate functional connectivity between various cell types including immune cells - such as T-cells, natural killer (NK) cells or macrophages - by facilitating a spectrum of long range cell-cell interactions. Although of medical interest, the relevance of NT-related findings for human medical conditions and treatment, e.g. in relation to inflammatory processes, remains elusive, particularly due to a lack of appropriate in vivo data. Here, we show for the first time that primary cultures of patient derived HPMCs are functionally connected via membranous nanotubes. NT formation appears to be actin cytoskeleton dependent, mediated by the action of filopodia. Importantly, significant variances in NT numbers between different donors as a consequence of pathophysiological alterations were observable. Furthermore, we show that TNF-α induces nanotube formation and demonstrate a strong correlation of NT connectivity in accordance with the cellular cholesterol level and distribution, pointing to a complex involvement of NTs in inflammatory processes with potential impact for clinical treatment

    Predicting the functional impact of protein mutations: application to cancer genomics

    Get PDF
    As large-scale re-sequencing of genomes reveals many protein mutations, especially in human cancer tissues, prediction of their likely functional impact becomes important practical goal. Here, we introduce a new functional impact score (FIS) for amino acid residue changes using evolutionary conservation patterns. The information in these patterns is derived from aligned families and sub-families of sequence homologs within and between species using combinatorial entropy formalism. The score performs well on a large set of human protein mutations in separating disease-associated variants (∼19 200), assumed to be strongly functional, from common polymorphisms (∼35 600), assumed to be weakly functional (area under the receiver operating characteristic curve of ∼0.86). In cancer, using recurrence, multiplicity and annotation for ∼10 000 mutations in the COSMIC database, the method does well in assigning higher scores to more likely functional mutations (‘drivers’). To guide experimental prioritization, we report a list of about 1000 top human cancer genes frequently mutated in one or more cancer types ranked by likely functional impact; and, an additional 1000 candidate cancer genes with rare but likely functional mutations. In addition, we estimate that at least 5% of cancer-relevant mutations involve switch of function, rather than simply loss or gain of function

    Platelet-targeted gene therapy with human factor VIII establishes haemostasis in dogs with haemophilia A

    Get PDF
    It is essential to improve therapies for controlling excessive bleeding in patients with haemorrhagic disorders. As activated blood platelets mediate the primary response to vascular injury, we hypothesize that storage of coagulation Factor VIII within platelets may provide a locally inducible treatment to maintain haemostasis for haemophilia A. Here we show that haematopoietic stem cell gene therapy can prevent the occurrence of severe bleeding episodes in dogs with haemophilia A for at least 2.5 years after transplantation. We employ a clinically relevant strategy based on a lentiviral vector encoding the ITGA2B gene promoter, which drives platelet-specific expression of human FVIII permitting storage and release of FVIII from activated platelets. One animal receives a hybrid molecule of FVIII fused to the von Willebrand Factor propeptide-D2 domain that traffics FVIII more effectively into α-granules. The absence of inhibitory antibodies to platelet-derived FVIII indicates that this approach may have benefit in patients who reject FVIII replacement therapies. Thus, platelet FVIII may provide effective long-term control of bleeding in patients with haemophilia A. Haemophilia is a genetic bleeding disorder associated with a deficiency in the coagulation factor VIII. Here, the authors use gene therapy to achieve stable overexpression of factor VIII in platelets of dogs with haemophilia A, preventing the occurrence of severe bleeding episodes for over 2.5 years

    Pharmacogenetics of warfarin in a paediatric population: time in therapeutic range, initial and stable dosing and adverse effects

    Get PDF
    Warfarin is used in paediatric populations, but dosing algorithms incorporating pharmacogenetic data have not been developed for children. Previous studies have produced estimates of the effect of polymorphisms in Cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase complex subunit 1 (VKORC1) on stable warfarin dosing, but data on time in therapeutic range, initial dosing and adverse effects are limited. Participants (n=97) were recruited, and routine clinical data and salivary DNA samples were collected from all participants and analysed for CYP2C9*2, *3 and VKORC1-1639 polymorphisms.VKORC1 -1639 was associated with a greater proportion of the first 6 months’ treatment time spent within the target International Normalised Ratio (INR) range, accounting for an additional 9.5% of the variance in the proportion of time. CYP2C9*2 was associated with a greater likelihood of INR values exceeding the target range during the initiation of treatment (odds ratio (OR; per additional copy) 4.18, 95% confidence interval (CI) 1.42, 12.34). CYP2C9*2 and VKORC1-1639 were associated with a lower dose requirement, and accounted for almost 12% of the variance in stable dose. VKORC1-1639 was associated with an increased likelihood of mild bleeding complications (OR (heterozygotes vs homozygotes) 4.53, 95% CI 1.59, 12.93). These data show novel associations between VKORC1-1639 and CYP2C9*2 and INR values in children taking warfarin, as well as replicating previous findings with regard to stable dose requirements. The development of pharmacogenomic dosing algorithms for children using warfarin has the potential to improve clinical care in this population

    Trimethylamine and Trimethylamine N-Oxide, a Flavin-Containing Monooxygenase 3 (FMO3)-Mediated Host-Microbiome Metabolic Axis Implicated in Health and Disease

    Get PDF
    Flavin-containing monooxygenase 3 (FMO3) is known primarily as an enzyme involved in the metabolism of therapeutic drugs. However, on a daily basis we are exposed to one of the most abundant substrates of the enzyme, trimethylamine, which is released from various dietary components by the action of gut bacteria. FMO3 converts the odorous trimethylamine to non-odorous trimethylamine N-oxide, which is excreted in urine. Impaired FMO3 activity gives rise to the inherited disorder primary trimethylaminuria. Affected individuals cannot produce trimethylamine N-oxide and, consequently, excrete large amounts of trimethylamine. A dysbiosis in gut bacteria can give rise to secondary trimethylaminuria. Recently, there has been much interest in FMO3 and its catalytic product trimethylamine N-oxide. This is because trimethylamine N-oxide has been implicated in various conditions affecting health, including cardiovascular disease, reverse cholesterol transport and glucose and lipid homeostasis. In this review, we consider the dietary components that can give rise to trimethylamine, the gut bacteria involved in the production of trimethylamine from dietary precursors, the metabolic reactions by which bacteria produce and utilize trimethylamine and the enzymes that catalyze the reactions. Also included is information on bacteria that produce trimethylamine in the oral cavity and vagina, two key microbiome niches that can influence health. Finally, we discuss the importance of the trimethylamine/trimethylamine N-oxide microbiome-host axis in health and disease, considering factors that affect bacterial production and host metabolism of trimethylamine, the involvement of trimethylamine N-oxide and FMO3 in disease and the implications of the host-microbiome axis for management of trimethylaminuria
    corecore