601 research outputs found

    The Impact of Non-Equipartition on Cosmological Parameter Estimation from Sunyaev-Zel'dovich Surveys

    Full text link
    The collisionless accretion shock at the outer boundary of a galaxy cluster should primarily heat the ions instead of electrons since they carry most of the kinetic energy of the infalling gas. Near the accretion shock, the density of the intracluster medium is very low and the Coulomb collisional timescale is longer than the accretion timescale. Electrons and ions may not achieve equipartition in these regions. Numerical simulations have shown that the Sunyaev-Zel'dovich observables (e.g., the integrated Comptonization parameter Y) for relaxed clusters can be biased by a few percent. The Y-mass relation can be biased if non-equipartition effects are not properly taken into account. Using a set of hydrodynamical simulations, we have calculated three potential systematic biases in the Y-mass relations introduced by non-equipartition effects during the cross-calibration or self-calibration when using the galaxy cluster abundance technique to constraint cosmological parameters. We then use a semi-analytic technique to estimate the non-equipartition effects on the distribution functions of Y (Y functions) determined from the extended Press-Schechter theory. Depending on the calibration method, we find that non-equipartition effects can induce systematic biases on the Y functions, and the values of the cosmological parameters Omega_8, sigma_8, and the dark energy equation of state parameter w can be biased by a few percent. In particular, non-equipartition effects can introduce an apparent evolution in w of a few percent in all of the systematic cases we considered. Techniques are suggested to take into account the non-equipartition effect empirically when using the cluster abundance technique to study precision cosmology. We conclude that systematic uncertainties in the Y-mass relation of even a few percent can introduce a comparable level of biases in cosmological parameter measurements.Comment: 10 pages, 3 figures, accepted for publication in the Astrophysical Journal, abstract abridged slightly. Typos corrected in version

    Utjecaj korozijskih inhibitora na krivulje ohlađivanja sredstva za kaljenje na bazi sojinog ulja

    Get PDF
    The relative inhibitory effect of a series of common yellow-metal (brass) corrosion inhibitors was studied potentiodynamically in a saline solution. The results of this study showed that all of the corrosion inhibitors examined could potentially exhibit substantial cooling time and rate reduction. The magnitude of this effect was corrosion inhibitor specific. Corrosion and cooling curve supporting data are provided.Relativni inhibitorski efekt niza korozijskih inhibitora obojenih metala (bronca) istraživani su potencijo-dinamički u solnim kupkama. Rezultati istraživanja pokazali su da svi ispitani korozijski inhibitori mogu utjecati na vrijeme ohlađivanja i smanjenje brzine ohlađivanja. Veličina tih efekata ovisila je o pojedinom korozijskom inhibitoru. Prikazani su podaci za koroziju kao i utjecaji na krivulje ohlađivanja

    Hydrostatic Expansion and Spin Changes During Type I X-Ray Bursts

    Get PDF
    We present calculations of the spin-down of a neutron star atmosphere due to hydrostatic expansion during a Type I X-ray burst. We show that (i) Cumming and Bildsten overestimated the spin-down of rigidly-rotating atmospheres by a factor of two, and (ii) general relativity has a small (5-10%) effect on the angular momentum conservation law. We rescale our results to different neutron star masses, rotation rates and equations of state, and present some detailed rotational profiles. Comparing with recent observations of large frequency shifts in MXB 1658-298 and 4U 1916-053, we find that the spin-down expected if the atmosphere rotates rigidly is a factor of two to three less than the observed values. If differential rotation is allowed to persist, we find that the upper layers of the atmosphere spin down by an amount comparable to the observed values; however, there is no compelling reason to expect the observed spin frequency to be that of only the outermost layers. We conclude that hydrostatic expansion and angular momentum conservation alone cannot account for the largest frequency shifts observed during Type I bursts.Comment: Submitted to the Astrophysical Journal (13 pages, including 4 figures

    Localizing compact binary inspirals on the sky using ground-based gravitational wave interferometers

    Get PDF
    The inspirals and mergers of compact binaries are among the most promising events for ground-based gravitational-wave (GW) observatories. The detection of electromagnetic (EM) signals from these sources would provide complementary information to the GW signal. It is therefore important to determine the ability of gravitational-wave detectors to localize compact binaries on the sky, so that they can be matched to their EM counterparts. We use Markov Chain Monte Carlo techniques to study sky localization using networks of ground-based interferometers. Using a coherent-network analysis, we find that the Laser Interferometer Gravitational Wave Observatory (LIGO)-Virgo network can localize 50% of their ~8 sigma detected neutron star binaries to better than 50 sq.deg. with 95% confidence region. The addition of the Large Scale Cryogenic Gravitational Wave Telescope (LCGT) and LIGO-Australia improves this to 12 sq.deg.. Using a more conservative coincident detection threshold, we find that 50% of detected neutron star binaries are localized to 13 sq.deg. using the LIGO-Virgo network, and to 3 sq.deg. using the LIGO-Virgo-LCGT-LIGO-Australia network. Our findings suggest that the coordination of GW observatories and EM facilities offers great promise.Comment: 6 pages, 4 figures, 1 table, matches published version in ApJ (incorporates referee's comments

    Unbiased Cosmological Parameter Estimation from Emission Line Surveys with Interlopers

    Full text link
    The galaxy catalogs generated from low-resolution emission line surveys often contain both foreground and background interlopers due to line misidentification, which can bias the cosmological parameter estimation. In this paper, we present a method for correcting the interloper bias by using the joint-analysis of auto- and cross-power spectra of the main and the interloper samples. In particular, we can measure the interloper fractions from the cross-correlation between the interlopers and survey galaxies, because the true cross-correlation must be negligibly small. The estimated interloper fractions, in turn, remove the interloper bias in the cosmological parameter estimation. For example, in the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) low-redshift (z<0.5z<0.5) [O II] λ3727\lambda3727{\AA} emitters contaminate high-redshift (1.9<z<3.51.9<z<3.5) Lyman-α\alpha line emitters. We demonstrate that the joint-analysis method yields a high signal-to-noise ratio measurement of the interloper fractions while only marginally increasing the uncertainties in the cosmological parameters relative to the case without interlopers. We also show the same is true for the high-latitude spectroscopic survey of Wide-Field Infrared Survey Telescope (WFIRST) mission where contamination occurs between the Balmer-α\alpha line emitters at lower redshifts (1.1<z<1.91.1<z<1.9) and Oxygen ([O III] λ5007\lambda5007{\AA}) line emitters at higher redshifts (1.7<z<2.81.7<z<2.8).Comment: 36 pages, 26 figure

    Galaxy Bias and its Effects on the Baryon Acoustic Oscillations Measurements

    Full text link
    The baryon acoustic oscillation (BAO) feature in the clustering of matter in the universe serves as a robust standard ruler and hence can be used to map the expansion history of the universe. We use high force resolution simulations to analyze the effects of galaxy bias on the measurements of the BAO signal. We apply a variety of Halo Occupation Distributions (HODs) and produce biased mass tracers to mimic different galaxy populations. We investigate whether galaxy bias changes the non-linear shifts on the acoustic scale relative to the underlying dark matter distribution presented by Seo et al (2009). For the less biased HOD models (b < 3), we do not detect any shift in the acoustic scale relative to the no-bias case, typically 0.10% \pm 0.10%. However, the most biased HOD models (b > 3) show a shift at moderate significance (0.79% \pm 0.31% for the most extreme case). We test the one-step reconstruction technique introduced by Eisenstein et al. (2007) in the case of realistic galaxy bias and shot noise. The reconstruction scheme increases the correlation between the initial and final (z = 1) density fields achieving an equivalent level of correlation at nearly twice the wavenumber after reconstruction. Reconstruction reduces the shifts and errors on the shifts. We find that after reconstruction the shifts from the galaxy cases and the dark matter case are consistent with each other and with no shift. The 1-sigma systematic errors on the distance measurements inferred from our BAO measurements with various HODs after reconstruction are about 0.07% - 0.15%.Comment: Accepted by ApJ. 21 pages, 10 figure

    New Neutrino Mass Bounds from Sloan Digital Sky Survey III Data Release 8 Photometric Luminous Galaxies

    Full text link
    We present neutrino mass bounds using 900,000 luminous galaxies with photometric redshifts measured from Sloan Digital Sky Survey III Data Release Eight (SDSS DR8). The galaxies have photometric redshifts between z=0.45z = 0.45 and z=0.65z = 0.65, and cover 10,000 square degrees and thus probe a volume of 3h3h^{-3}Gpc3^3, enabling tight constraints to be derived on the amount of dark matter in the form of massive neutrinos. A new bound on the sum of neutrino masses mν<0.26\sum m_\nu < 0.26 eV, at 95% confidence level (CL), is obtained after combining our sample of galaxies, which we call "CMASS", with WMAP 7 year Cosmic Microwave Background (CMB) data and the most recent measurement of the Hubble parameter from the Hubble Space Telescope (HST). This constraint is obtained with a conservative multipole range choice of 30<<20030 < \ell < 200 in order to minimize non-linearities, and a free bias parameter in each of the four redshift bins. We study the impact of assuming this linear galaxy bias model using mock catalogs, and find that this model causes a small (11.5σ\sim 1-1.5 \sigma) bias in ΩDMh2\Omega_{\rm DM} h^2. For this reason, we also quote neutrino bounds based on a conservative galaxy bias model containing additional, shot noise-like free parameters. In this conservative case, the bounds are significantly weakened, e.g. mν<0.36\sum m_\nu < 0.36 eV (95% confidence level) for WMAP+HST+CMASS (max=200\ell_{\rm max}=200). We also study the dependence of the neutrino bound on multipole range (max=150\ell_{\rm max}=150 vs max=200\ell_{\rm max}=200) and on which combination of data sets is included as a prior. The addition of supernova and/or Baryon Acoustic Oscillation data does not significantly improve the neutrino mass bound once the HST prior is included. [abridged]Comment: 14 pages, 8 figures, 1 tabl

    Implications of Two Type Ia Supernova Populations for Cosmological Measurements

    Full text link
    Recent work suggests that Type Ia supernovae (SNe) are composed of two distinct populations: prompt and delayed. By explicitly incorporating properties of host galaxies, it may be possible to target and eliminate systematic differences between these two putative populations. However, any resulting {\em post}-calibration shift in luminosity between the components will cause a redshift-dependent systematic shift in the Hubble diagram. Utilizing an existing sample of 192 SNe Ia, we find that the average luminosity difference between prompt and delayed SNe is constrained to be (4.5±8.9)(4.5 \pm 8.9)%. If the absolute difference between the two populations is 0.025 mag, and this is ignored when fitting for cosmological parameters, then the dark energy equation of state (EOS) determined from a sample of 2300 SNe Ia is biased at 1σ\sim1\sigma. By incorporating the possibility of a two-population systematic, this bias can be eliminated. However, assuming no prior on the strength of the two-population effect, the uncertainty in the best-fit EOS is increased by a factor of 2.5, when compared to the equivalent sample with no underlying two-population systematic. To avoid introducing a bias in the EOS parameters, or significantly degrading the measurement accuracy, it is necessary to control the post-calibration luminosity difference between prompt and delayed SN populations to better than 0.025 mag.Comment: 4 pages, 4 figures; New figures added, some old figures removed; The effect of the uncertainty in the two population model on parameter estimation discussed; Reflects version accepted for publication in Astrophys. J. Let

    The growth index of matter perturbations and modified gravity

    Full text link
    We place tight constraints on the growth index γ\gamma by using the recent growth history results of 2dFGRS, SDSS-LRG, VIMOS-VLT deep Survey (VVDS) and {\em WiggleZ} datasets. In particular, we investigate several parametrizations of the growth index γ(z)\gamma(z), by comparing their cosmological evolution using observational growth rate data at different redshifts. Utilizing a standard likelihood analysis we find that the use of the combined growth data provided by the 2dFGRS, SDSS-LRG, VVDS and {\em WiggleZ} galaxy surveys, puts the most stringent constraints on the value of the growth index. As an example, assuming a constant growth index we obtain that γ=0.602±0.055\gamma=0.602\pm 0.055 for the concordance Λ\LambdaCDM expansion model. Concerning the Dvali-Gabadadze-Porrati gravity model, we find γ=0.503±0.06\gamma=0.503\pm 0.06 which is lower, and almost 3σ3\sigma away, from the theoretically predicted value of γDGP11/16\gamma_{DGP}\simeq 11/16. Finally, based on a time varying growth index we also confirm that the combined growth data disfavor the DGP gravity.Comment: 8 pages, 5 figures. Revised version accepted in MNRAS. arXiv admin note: text overlap with arXiv:1202.163

    Randomized Comparison of 64-Slice Single- and Dual-Source Computed Tomography Coronary Angiography for the Detection of Coronary Artery Disease

    Get PDF
    ObjectivesThe purpose of this study was to analyze the influence of a systematic approach to lower heart rate for coronary computed tomography (CT) angiography on diagnostic accuracy of 64-slice single- and dual-source CT.BackgroundCoronary CT angiography is often impaired by motion artifacts, so that routine lowering of heart rate is usually recommended. This is often conceived as a major limitation of the technique. It is expected that higher temporal resolution, such as with dual-source 64-slice CT, would allow diagnostic imaging even without systematic pre-treatment for lowering the heart rate.MethodsTwo hundred patients with suspected coronary artery disease were first randomized to either 64-slice single-source CT (n = 100) or dual-source CT (n = 100) for contrast-enhanced coronary artery evaluation. In each group, patients were further randomized to either receive systematic heart rate control (oral and intravenous beta-blockade for a target heart rate ≤60 beats/min) or receive no premedication. Evaluability of datasets and diagnostic accuracy were compared between groups against the results obtained from invasive angiography.ResultsSystematic pre-treatment lowered heart rate during CT coronary angiography by 10 beats/min. Heart rate control significantly improved evaluability in single-source CT (93% vs. 69% on a per-patient basis, p = 0.005), whereas it did not in dual-source CT (96% vs. 98%). In evaluable patients, sensitivity to detect the presence of at least 1 coronary stenosis by single-source CT was 86% and 79%, respectively, with and without heart rate control (p = NS). For dual-source CT, it was 100% and 95%, respectively (p = NS). The rate of correctly classified patients, defined as evaluable and correct classification as to the presence or absence of at least 1 coronary artery stenosis, was significantly improved by heart rate control in single-source CT (78% vs. 57%, p = 0.04), whereas there was no such influence in dual-source CT (87% vs. 93%).ConclusionsSystematic heart rate control significantly improves image quality for coronary visualization by 64-slice single-source CT, whereas image quality and diagnostic accuracy remain unaffected in dual-source CT angiography. Improved temporal resolution obviates the need for heart rate control
    corecore