182 research outputs found

    Muon capture by 3He nuclei followed by proton and deuteron production

    Full text link
    The paper describes an experiment aimed at studying muon capture by 3He{}^{3}\mathrm{He} nuclei in pure 3He{}^{3}\mathrm{He} and D2+3He\mathrm{D}_2 + {}^{3}\mathrm{He} mixtures at various densities. Energy distributions of protons and deuterons produced via Ό−+3He→p+n+n+ΜΌ\mu^-+{}^{3}\mathrm{He}\to p+n+n + \nu_{\mu } and Ό−+3He→d+n+ΜΌ\mu^-+{}^{3} \mathrm{He} \to d+n + \nu_{\mu} are measured for the energy intervals 10−4910 - 49 MeV and 13−3113 - 31 MeV, respectively. Muon capture rates, λcapp(ΔEp)\lambda_\mathrm{cap}^p (\Delta E_p) and λcapd(ΔEd)\lambda_\mathrm{cap}^d (\Delta E_d) are obtained using two different analysis methods. The least--squares methods gives λcapp=(36.7±1.2)s−1\lambda_\mathrm{cap}^p = (36.7\pm 1.2) {s}^{- 1}, λcapd=(21.3±1.6)s−1\lambda_\mathrm{cap}^d = (21.3 \pm 1.6) {s}^{- 1}. The Bayes theorem gives λcapp=(36.8±0.8)s−1\lambda_\mathrm{cap}^p = (36.8 \pm 0.8) {s}^{- 1}, λcapd=(21.9±0.6)s−1\lambda_\mathrm{cap}^d = (21.9 \pm 0.6) {s}^{- 1}. The experimental differential capture rates, dλcapp(Ep)/dEpd\lambda_\mathrm{cap}^p (E_p) / dE_p and dλcapd(Ed)/dEd d\lambda_\mathrm{cap}^d (E_d) / dE_d, are compared with theoretical calculations performed using the plane--wave impulse approximation (PWIA) with the realistic NN interaction Bonn B potential. Extrapolation to the full energy range yields total proton and deuteron capture rates in good agreement with former results.Comment: 17 pages, 13 figures, accepted for publication in PR

    The Genetic contribution to solving the cocktail-party problem

    Get PDF
    Communicating in everyday situations requires solving the cocktail-party problem, or segregating the acoustic mixture into its constituent sounds and attending to those of most interest. Humans show dramatic variation in this ability, leading some to experience real-world problems irrespective of whether they meet criteria for clinical hearing loss. Here, we estimated the genetic contribution to cocktail-party listening by measuring speech-reception thresholds (SRTs) in 425 people from large families and ranging in age from 18 to 91 years. Roughly half the variance of SRTs was explained by genes (h 2 = 0.567). The genetic correlation between SRTs and hearing thresholds (HTs) was medium (ρ G = 0.392), suggesting that the genetic factors influencing cocktail-party listening were partially distinct from those influencing sound sensitivity. Aging and socioeconomic status also strongly influenced SRTs. These findings may represent a first step toward identifying genes for hidden hearing loss, or hearing problems in people with normal HTs

    Sinus Development and Pneumatization in a Primary Ciliary Dyskinesia Cohort

    Get PDF
    Background: Primary ciliary dyskinesia (PCD) is a genetically diverse disease which causes impaired mucociliary clearance, and results in pulmonary, otologic, and rhinologic disease in affected patients. Genetic mutations in multiple genes impair the ability of patients to clear mucous from the lungs, middle ear, and sinonasal cavity and lead to chronic pulmonary and sinonasal symptoms. Methods: We identified 17 PCD patients who had available CT scans. Volumes for bilateral maxillary, sphenoid, and frontal sinuses were calculated. A control population of patients who had preoperative CT scans for endoscopic endonasal resection of skull base pathology without sinonasal cavity involvement was also identified. Results: The mean age of PCD was 33 and ranged from 13 to 54 years. Patients were age- and gender-matched to a control group that underwent resection of anterior skull-base tumors and had a mean age of 35 that ranged between 17–53 years old. The volumes for all thee sinus cavities were significantly smaller (p < 0.007) compared to the control population. The average Lund-Mackay score was 10.6 in the PCD cohort (range 6–16) in comparison to an average of 0.7 in the control cohort (range 0–2). Conclusions: Overall sinus volumes were smaller in patients with PCD compared to our control population. Future studies will be aimed at understanding defects in sinus development as a function of specific genetic mutations in PCD patients. Ultimately, a better understanding of the underlying pathophysiology of PCD will allow us to identify the optimal treatment practices for this unique patient group

    PYTHIA 6.4 Physics and Manual

    Full text link
    The PYTHIA program can be used to generate high-energy-physics `events', i.e. sets of outgoing particles produced in the interactions between two incoming particles. The objective is to provide as accurate as possible a representation of event properties in a wide range of reactions, within and beyond the Standard Model, with emphasis on those where strong interactions play a role, directly or indirectly, and therefore multihadronic final states are produced. The physics is then not understood well enough to give an exact description; instead the program has to be based on a combination of analytical results and various QCD-based models. This physics input is summarized here, for areas such as hard subprocesses, initial- and final-state parton showers, underlying events and beam remnants, fragmentation and decays, and much more. Furthermore, extensive information is provided on all program elements: subroutines and functions, switches and parameters, and particle and process data. This should allow the user to tailor the generation task to the topics of interest.Comment: 576 pages, no figures, uses JHEP3.cls. The code and further information may be found on the PYTHIA web page: http://www.thep.lu.se/~torbjorn/Pythia.html Changes in version 2: Mistakenly deleted section heading for "Physics Processes" reinserted, affecting section numbering. Minor updates to take into account referee comments and new colour reconnection option

    Characterization of large area avalanche photodiodes in X-ray and VUV-light detection

    Get PDF
    The present manuscript summarizes novel studies on the application of large area avalanche photodiodes (LAAPDs) to the detection of X-rays and vacuum ultraviolet (VUV) light. The operational characteristics of four different LAAPDs manufactured by Advanced Photonix Inc., with active areas of 80 and 200 mm^2 were investigated for X-ray detection at room temperature. The best energy resolution was found to be in the 10-18% range for 5.9 keV X-rays. The LAAPD, being compact, simple to operate and with high counting rate capability (up to about 10^5/s), proved to be useful in several applications, such as low-energy X-ray detection, where they can reach better performance than proportional counters. Since X-rays are used as reference in light measurements, the gain non-linearity between 5.9 keV X-rays and light pulses was investigated. The gain ratio between X-rays and VUV light decreases with gain, reaching 10 and 6% variations for VUV light produced in argon (~128 nm) and xenon (~172 nm), respectively, for a gain 200, while for visible light (~635 nm) the variation is lower than 1%. The effect of temperature on the LAAPD performance was investigated. Relative gain variations of about -5% per Celsius degree were observed for the highest gains. The excess noise factor was found to be independent on temperature, being between 1.8 and 2.3 for gains from 50 to 300. The energy resolution is better for decreasing temperatures due mainly to the dark current. LAAPDs were tested under intense magnetic fields up to 5 T, being insensitive when used in X-ray and visible-light detection, while for VUV light a significant amplitude reduction was observed at 5 T.Comment: 25 pages, 40 figures, submitted to JINS

    Characterization of large area avalanche photodiodes in X-ray and VUV-light detection

    Get PDF
    The present manuscript summarizes novel studies on the application of large area avalanche photodiodes (LAAPDs) to the detection of X-rays and vacuum ultraviolet (VUV) light. The operational characteristics of four different LAAPDs manufactured by Advanced Photonix Inc., with active areas of 80 and 200 mm^2 were investigated for X-ray detection at room temperature. The best energy resolution was found to be in the 10-18% range for 5.9 keV X-rays. The LAAPD, being compact, simple to operate and with high counting rate capability (up to about 10^5/s), proved to be useful in several applications, such as low-energy X-ray detection, where they can reach better performance than proportional counters. Since X-rays are used as reference in light measurements, the gain non-linearity between 5.9 keV X-rays and light pulses was investigated. The gain ratio between X-rays and VUV light decreases with gain, reaching 10 and 6% variations for VUV light produced in argon (~128 nm) and xenon (~172 nm), respectively, for a gain 200, while for visible light (~635 nm) the variation is lower than 1%. The effect of temperature on the LAAPD performance was investigated. Relative gain variations of about -5% per Celsius degree were observed for the highest gains. The excess noise factor was found to be independent on temperature, being between 1.8 and 2.3 for gains from 50 to 300. The energy resolution is better for decreasing temperatures due mainly to the dark current. LAAPDs were tested under intense magnetic fields up to 5 T, being insensitive when used in X-ray and visible-light detection, while for VUV light a significant amplitude reduction was observed at 5 T.Comment: 25 pages, 40 figures, submitted to JINS

    Characterization of large area avalanche photodiodes in X-ray and VUV-light detection

    Get PDF
    The present manuscript summarizes novel studies on the application of large area avalanche photodiodes (LAAPDs) to the detection of X-rays and vacuum ultraviolet (VUV) light. The operational characteristics of four different LAAPDs manufactured by Advanced Photonix Inc., with active areas of 80 and 200 mm^2 were investigated for X-ray detection at room temperature. The best energy resolution was found to be in the 10-18% range for 5.9 keV X-rays. The LAAPD, being compact, simple to operate and with high counting rate capability (up to about 10^5/s), proved to be useful in several applications, such as low-energy X-ray detection, where they can reach better performance than proportional counters. Since X-rays are used as reference in light measurements, the gain non-linearity between 5.9 keV X-rays and light pulses was investigated. The gain ratio between X-rays and VUV light decreases with gain, reaching 10 and 6% variations for VUV light produced in argon (~128 nm) and xenon (~172 nm), respectively, for a gain 200, while for visible light (~635 nm) the variation is lower than 1%. The effect of temperature on the LAAPD performance was investigated. Relative gain variations of about -5% per Celsius degree were observed for the highest gains. The excess noise factor was found to be independent on temperature, being between 1.8 and 2.3 for gains from 50 to 300. The energy resolution is better for decreasing temperatures due mainly to the dark current. LAAPDs were tested under intense magnetic fields up to 5 T, being insensitive when used in X-ray and visible-light detection, while for VUV light a significant amplitude reduction was observed at 5 T.Comment: 25 pages, 40 figures, submitted to JINS

    A human ciliopathy reveals essential functions for NEK10 in airway mucociliary clearance

    Get PDF
    Mucociliary clearance, the physiological process by which mammalian conducting airways expel pathogens and unwanted surface materials from the respiratory tract, depends on the coordinated function of multiple specialized cell types, including basal stem cells, mucus-secreting goblet cells, motile ciliated cells, cystic fibrosis transmembrane conductance regulator (CFTR)-rich ionocytes, and immune cells1,2. Bronchiectasis, a syndrome of pathological airway dilation associated with impaired mucociliary clearance, may occur sporadically or as a consequence of Mendelian inheritance, for example in cystic fibrosis, primary ciliary dyskinesia (PCD), and select immunodeficiencies3. Previous studies have identified mutations that affect ciliary structure and nucleation in PCD4, but the regulation of mucociliary transport remains incompletely understood, and therapeutic targets for its modulation are lacking. Here we identify a bronchiectasis syndrome caused by mutations that inactivate NIMA-related kinase 10 (NEK10), a protein kinase with previously unknown in vivo functions in mammals. Genetically modified primary human airway cultures establish NEK10 as a ciliated-cell-specific kinase whose activity regulates the motile ciliary proteome to promote ciliary length and mucociliary transport but which is dispensable for normal ciliary number, radial structure, and beat frequency. Together, these data identify a novel and likely targetable signaling axis that controls motile ciliary function in humans and has potential implications for other respiratory disorders that are characterized by impaired mucociliary clearance

    Findings from an in-depth annual tree-ring radiocarbon intercomparison

    Get PDF
    The radiocarbon (Âč⁎C) calibration curve so far contains annually resolved data only for a short period of time. With accelerator mass spectrometry (AMS) matching the precision of decay counting, it is now possible to efficiently produce large datasets of annual resolution for calibration purposes using small amounts of wood. The radiocarbon intercomparison on single-year tree-ring samples presented here is the first to investigate specifically possible offsets between AMS laboratories at high precision. The results show that AMS laboratories are capable of measuring samples of Holocene age with an accuracy and precision that is comparable or even goes beyond what is possible with decay counting, even though they require a thousand times less wood. It also shows that not all AMS laboratories always produce results that are consistent with their stated uncertainties. The long-term benefits of studies of this kind are more accurate radiocarbon measurements with, in the future, better quantified uncertainties

    The Atacama Cosmology Telescope: A Catalog of >4000 Sunyaev–Zel’dovich Galaxy Clusters

    Get PDF
    We present a catalog of 4195 optically confirmed Sunyaev–Zel'dovich (SZ) selected galaxy clusters detected with signal-to-noise ratio >4 in 13,211 deg2 of sky surveyed by the Atacama Cosmology Telescope (ACT). Cluster candidates were selected by applying a multifrequency matched filter to 98 and 150 GHz maps constructed from ACT observations obtained from 2008 to 2018 and confirmed using deep, wide-area optical surveys. The clusters span the redshift range 0.04 1 clusters, and a total of 868 systems are new discoveries. Assuming an SZ signal versus mass-scaling relation calibrated from X-ray observations, the sample has a 90% completeness mass limit of M500c > 3.8 × 1014 M⊙, evaluated at z = 0.5, for clusters detected at signal-to-noise ratio >5 in maps filtered at an angular scale of 2farcm4. The survey has a large overlap with deep optical weak-lensing surveys that are being used to calibrate the SZ signal mass-scaling relation, such as the Dark Energy Survey (4566 deg2), the Hyper Suprime-Cam Subaru Strategic Program (469 deg2), and the Kilo Degree Survey (825 deg2). We highlight some noteworthy objects in the sample, including potentially projected systems, clusters with strong lensing features, clusters with active central galaxies or star formation, and systems of multiple clusters that may be physically associated. The cluster catalog will be a useful resource for future cosmological analyses and studying the evolution of the intracluster medium and galaxies in massive clusters over the past 10 Gyr
    • 

    corecore