2,200 research outputs found

    Thermodynamics of Two Dimensional Magnetic Nanoparticles

    Full text link
    A two dimensional magnetic particle in the presence of an external magnetic field is studied. Equilibrium thermodynamical properties are derived by evaluating analytically the partition function. When the external field is applied perpendicular to the anisotropy axis the system exhibits a second order phase transition with order parameter being the magnetization parallel to the field. In this case the system is isomorph to a mechanical system consisting in a particle moving without friction in a circle rotating about its vertical diameter. Contrary to a paramagnetic particle, equilibrium magnetization shows a maximum at finite temperature. We also show that uniaxial anisotropy in a system of noninteracting particles can be missinterpreted as a ferromagnetic or antiferromagnetic coupling among the magnetic particles depending on the angle between anisotropy axis and magnetic field.Comment: 4 pages 6 figures 19 reference

    Giant magnetoimpedance in crystalline Mumetal

    Full text link
    We studied giant magnetoimpedance (GMI) effect in commercial crystalline Mumetal, with the emphasis to sample thickness dependence and annealing effects. By using appropriate heat treatment one can achieve GMI ratios as high as 310%, and field sensitivity of about 20%/Oe, which is comparable to the best GMI characteristics obtained for amorphous and nanocrystalline soft magnetic materials.Comment: 8 pages, 3 figure

    Validity of the N\'{e}el-Arrhenius model for highly anisotropic Co_xFe_{3-x}O_4 nanoparticles

    Get PDF
    We report a systematic study on the structural and magnetic properties of Co_{x}Fe_{3-x}O_{4} magnetic nanoparticles with sizes between 55 to 2525 nm, prepared by thermal decomposition of Fe(acac)_{3} and Co(acac)_{2}. The large magneto-crystalline anisotropy of the synthesized particles resulted in high blocking temperatures (4242 K \leqq TBT_B 345\leqq 345 K for 55 \leqq d 13\leqq 13 nm ) and large coercive fields (HC1600H_C \approxeq 1600 kA/m for T=5T = 5 K). The smallest particles (=5=5 nm) revealed the existence of a magnetically hard, spin-disordered surface. The thermal dependence of static and dynamic magnetic properties of the whole series of samples could be explained within the N\'{e}el-Arrhenius relaxation framework without the need of ad-hoc corrections, by including the thermal dependence of the magnetocrystalline anisotropy constant K1(T)K_1(T) through the empirical Br\"{u}khatov-Kirensky relation. This approach provided K1(0)K_1(0) values very similar to the bulk material from either static or dynamic magnetic measurements, as well as realistic values for the response times (τ01010\tau_0 \simeq 10^{-10} s). Deviations from the bulk anisotropy values found for the smallest particles could be qualitatively explained based on Zener\'{}s relation between K1(T)K_1(T) and M(T)

    Structural and magnetic study of a dilute magnetic semiconductor: Fe doped CeO2 nanoparticles

    Full text link
    This paper reports the effect of Fe doping on the structure and room temperature ferromagnetism of CeO2 nanoparticles. X-ray diffraction and selective area electron diffraction measurement reflects that Ce1-xFexO2 (x = 0.0 - 0.07) nanoparticles exhibit single phase nature with cubic structure and none of the sample showed the presence of any secondary phase. The mean particle size calculated by using a transmission electron microscopy measurement was found to increase with increase in Fe content. DC magnetization measurements performed at room temperature indicates that all the samples exhibit ferromagnetism. The saturation magnetic moment has been found to increase with an increase in the Fe content.Comment: 16 Pages, 5 figure, 1 Table, Accepted in JN

    Spin canted magnetism, decoupling of charge and spin ordering in NdNiO3_3

    Get PDF
    We report detailed magnetization measurements on the perovskite oxide NdNiO3_3. This system has a first order metal-insulator (M-I) transition at about 200 K which is associated with charge ordering. There is also a concurrent paramagnetic to antiferromagnetic spin ordering transition in the system. We show that the antiferromagnetic state of the nickel sublattice is spin canted. We also show that the concurrency of the charge ordering and spin ordering transitions is seen only while warming up the system from low temperature. The transitions are not concurrent while cooling the system through the M-I transition temperature. This is explained based on the fact that the charge ordering transition is first order while the spin ordering transition is continuous. In the magnetically ordered state the system exhibits ZFC-FC irreversibilities, as well as history-dependent magnetization and aging. Our analysis rules out the possibility of spin-glass or superparamagnetism and suggests that the irreversibilities originate from magnetocrystalline anisotropy and domain wall pinning.Comment: 8 pages, 7 figure

    Magnetic properties and giant magnetoresistance in melt-spun CoCu alloys

    Full text link
    Magnetic, structural, and transport properties of as quenched and annealed Co10Cu90 samples have been investigated using x¿ray diffraction and a SQUID magnetometer. The largest value of MR change was observed for the as¿quenched sample annealed at 450°C for 30 min. The magnetic and transport properties closely correlate with the microstructure, mainly with Co magnetic particle size and its distribution. For thermal annealing the as quenched samples below 600°C, the Co particle diameters increase from 4.0 to 6.0 nm with a magnetoresistance (MR) drop from 33.0% to 5.0% at 10 K. Comparison with the theory indicates that the interfacial electron spin¿dependent scattering mechanism correlates with GMR for Co particle diameters up to about 6.0 nm

    A group-galaxy cross-correlation function analysis in zCOSMOS

    Get PDF
    We present a group-galaxy cross-correlation analysis using a group catalog produced from the 16,500 spectra from the optical zCOSMOS galaxy survey. Our aim is to perform a consistency test in the redshift range 0.2 < z < 0.8 between the clustering strength of the groups and mass estimates that are based on the richness of the groups. We measure the linear bias of the groups by means of a group-galaxy cross-correlation analysis and convert it into mass using the bias-mass relation for a given cosmology, checking the systematic errors using realistic group and galaxy mock catalogs. The measured bias for the zCOSMOS groups increases with group richness as expected by the theory of cosmic structure formation and yields masses that are reasonably consistent with the masses estimated from the richness directly, considering the scatter that is obtained from the 24 mock catalogs. An exception are the richest groups at high redshift (estimated to be more massive than 10^13.5 M_sun), for which the measured bias is significantly larger than for any of the 24 mock catalogs (corresponding to a 3-sigma effect), which is attributed to the extremely large structure that is present in the COSMOS field at z ~ 0.7. Our results are in general agreement with previous studies that reported unusually strong clustering in the COSMOS field.Comment: 13 pages, 9 figures, published in Ap

    Landau Level Crossings and Extended-State Mapping in Magnetic Two-dimensional Electron Gases

    Full text link
    We present longitudinal and Hall magneto-resistance measurements of a ``magnetic'' two-dimensional electron gas (2DEG) formed in modulation-doped Zn1xy_{1-x-y}Cdx_{x}Mny_{y}Se quantum wells. The electron spin splitting is temperature and magnetic field dependent, resulting in striking features as Landau levels of opposite spin cross near the Fermi level. Magnetization measurements on the same sample probe the total density of states and Fermi energy, allowing us to fit the transport data using a model involving extended states centered at each Landau level and two-channel conduction for spin-up and spin-down electrons. A mapping of the extended states over the whole quantum Hall effect regime shows no floating of extended states as Landau levels cross near the Fermi level.Comment: 10 pages, 4 figures, submitted to Phys. Rev.
    corecore