15 research outputs found

    Study of production and cold nuclear matter effects in pPb collisions at=5 TeV

    Get PDF
    Production of mesons in proton-lead collisions at a nucleon-nucleon centre-of-mass energy = 5 TeV is studied with the LHCb detector. The analysis is based on a data sample corresponding to an integrated luminosity of 1.6 nb(-1). The mesons of transverse momenta up to 15 GeV/c are reconstructed in the dimuon decay mode. The rapidity coverage in the centre-of-mass system is 1.5 < y < 4.0 (forward region) and -5.0 < y < -2.5 (backward region). The forward-backward production ratio and the nuclear modification factor for (1S) mesons are determined. The data are compatible with the predictions for a suppression of (1S) production with respect to proton-proton collisions in the forward region, and an enhancement in the backward region. The suppression is found to be smaller than in the case of prompt J/psi mesons

    Biological Invasions in South Africa: an overview

    Get PDF
    South Africa has much to offer as a location for the study of biological invasions. It is an ecologically diverse country comprised of nine distinct terrestrial biomes, four recognised marine ecoregions, and two sub-Antarctic Islands. The country has a rich and chequered socio-political history, and a similarly varied history of species introductions. There has been a long tradition of large-scale conservation in the country, and efforts to manage and regulate invasions began in the nineteenth century, with some notable successes, but many setbacks. With the advent of democracy in the early 1990s, South Africa established large alien species control programmes to meet the dual demands of poverty alleviation and conservation, and has since pioneered regulatory approaches to address invasions. In terms of research, South Africa has played an important role in the development of invasion science globally. It continues to have one of the most active communities anywhere in the world, with strengths in theoretical and applied invasion science, and world-leading expertise in specific sub-disciplines (e.g. the classical biological control of invasive plants). In this introductory chapter to the book “Biological Invasions in South Africa”, we highlight key events that have affected biological invasions, their management, and the research conducted over the past two centuries. In so doing, we build on earlier reviews—from a national situational review of the state of knowledge in 1986, culminating most recently with a comprehensive report on the status of biological invasions and their management at a national level in 2018. Our book comprises 31 chapters (including this one), divided into seven parts that examine where we have come from, where we are, how we got here, why the issue is important, what we are doing about it, what we have learnt, and where we may be headed. The book lists over 1400 alien species that have established outside of captivity or cultivation. These species cost the country at least US$1 billion per year (~ZAR 15 billion), and threaten South Africa’s unique biodiversity. The introduction and spread of alien species, the impacts that they have had, the benefits that they have brought, and the attempts to manage them have provided many opportunities for research. Documenting what we have learned from this unplanned experiment is a primary goal of this book. We hope this book will allow readers to better understand biological invasions in South Africa, and thereby assist them in responding to the challenge of addressing the problem

    The extent and effectiveness of alien plant control projects in South Africa

    Get PDF
    CITATION: van Wilgen, B.W. et al. 2020. The extent and effectiveness of alien plant control projects in South Africa. In: Biological Invasions in South Africa. van Wilgen, B.W., Measey, J., Richardson, D.M., Wilson, J.R. and Zengeya, T.A. (eds.). Springer, Cham:597-628. doi:10.1007/978-3-030-32394-3_21The original publication is available at https://link.springer.com/book/10.1007/978-3-030-32394-3Studies of the impact of alien species on the environment are increasingly being carried out, and there has been ongoing debate about how to standardise the description of these impacts. This chapter evaluates the state of knowledge on the impacts of alien species on biodiversity in South Africa based on different assessment methods. Despite South Africa being one of the most biologically diverse countries in the world, there have been very few studies that formally document the impacts of alien species on biodiversity. Most of what is known is based on expert opinion, and consequently the level of confidence in the estimates of the magnitude of these impacts is low. However, it is clear that a significant number of alien species cause major negative impacts, and that there is cause for serious concern. There is a growing global effort to assess all alien species with standardised protocols to alleviate the problem of comparing impacts measured using different approaches. Formal assessments have been done for a few alien species in South Africa, but most naturalised and invasive species have not been evaluated, and, we suspect, for most alien species there has been no attempt, as yet, to document their impacts. However, red-listing processes found that alien species were frequently included as a significant extinction risk for several native species of fish, amphibians, and plants. There are very few studies that cover the combined impacts of co-occurring alien species in particular areas, and these studies could provide the rationale for regulation and management, which is often absent. While reductions due to alien species in the value of ecosystem services, the productivity of rangelands, and biodiversity intactness are relatively low at present these impacts are expected to grow rapidly as more invasive species enter a stage of exponential growth.https://link.springer.com/chapter/10.1007%2F978-3-030-32394-3_21Publisher’s versio

    Evolutionary Scenario of the Early History of the Animal Kingdom: Evidence from Precambrian (Ediacaran) Weng’an and Early Cambrian Maotianshan Biotas, China

    No full text
    corecore