158 research outputs found

    NMR Analysis of the Dynamic Exchange of the NS2B Cofactor between Open and Closed Conformations of the West Nile Virus NS2B-NS3 Protease

    Get PDF
    Dengue and West Nile virus infections put an estimated 2.5 billion people at risk. Neither drugs nor vaccines are currently available against these diseases. The non-structural protein NS3 is a protease that, together with the cofactor NS2B, is essential for viral maturation. The NS2B-NS3 proteases of dengue and West Nile viruses are highly homologous and present promising drug targets. Crystal structures of the West Nile virus protease with and without bound inhibitor revealed large structural differences in NS2B, while no crystal structure of the dengue virus protease could be determined with a bound inhibitor. We investigated the structural change in solution and found that the C-terminal segment (CTS) of the NS2B cofactor is prone to dissociation from NS3. In the case of the West Nile virus protease, the CTS of NS2B is mostly associated with NS3, especially in the presence of inhibitors. In the case of the dengue virus protease and in the absence of inhibitors, the CTS of NS2B is mostly dissociated from NS3. Finding drug candidates to inhibit the association of the NS2B cofactor may thus be easier for the dengue virus protease

    Treatment of secondary hyperparathyroidism in haemodialysis patients: a randomised clinical trial comparing paricalcitol and alfacalcidol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Secondary hyperparathyroidism is a common feature in patients with chronic kidney disease. Its serious clinical consequences include renal osteodystrophy, calcific uremic arteriolopathy, and vascular calcifications that increase morbidity and mortality.</p> <p>Reduced synthesis of active vitamin D contributes to secondary hyperparathyroidism. Therefore, this condition is managed with activated vitamin D. However, hypercalcemia and hyperphosphatemia limit the use of activated vitamin D.</p> <p>In Denmark alfacalcidol is the primary choice of vitamin D analog.</p> <p>A new vitamin D analog, paricalcitol, may be less prone to induce hypercalcemia and hyperphosphatemia.</p> <p>However, a randomised controlled clinical study comparing alfacalcidol and paricalcitol has never been performed.</p> <p>The primary objective of this study is to compare alfacalcidol and paricalcitol. We evaluate the suppression of the secondary hyperparathyroidism and the tendency towards hyperphosphatemia and hypercalcemia.</p> <p>Methods/Design</p> <p>This is an investigator-initiated cross-over study. Nine Danish haemodialysis units will recruit 117 patients with end stage renal failure on maintenance haemodialysis therapy.</p> <p>Patients are randomised into two treatment arms. After a wash out period of 6 weeks they receive increasing doses of alfacalcidol or paricalcitol for a period of 16 weeks and after a further wash out period of 6 weeks they receive the contrary treatment (paricalcitol or alfacalcidol) for 16 weeks.</p> <p>Discussion</p> <p>Hyperparathyroidism, hypercalcemia and hyperphosphatemia are associated with increased cardiovascular mortality in patients with chronic kidney disease.</p> <p>If there is any difference in the ability of these two vitamin D analogs to decrease the secondary hyperparathyroidism without causing hypercalcemia and hyperphosphatemia, there may also be a difference in the risk of cardiovascular mortality depending on which vitamin D analog that are used. This has potential major importance for this group of patients.</p> <p>Trial registration</p> <p>ClinicalTrials.gov NCT004695</p

    In Vivo Depletion of Lymphotoxin-Alpha Expressing Lymphocytes Inhibits Xenogeneic Graft-versus-Host-Disease

    Get PDF
    Graft-versus-host disease (GVHD) is a major barrier to successful allogeneic hematopoietic cell transplantation and is largely mediated by activated donor lymphocytes. Lymphotoxin (LT)-α is expressed by subsets of activated T and B cells, and studies in preclinical models demonstrated that targeted depletion of these cells with a mouse anti-LT-α monoclonal antibody (mAb) was efficacious in inhibiting inflammation and autoimmune disease. Here we demonstrate that LT-α is also upregulated on activated human donor lymphocytes in a xenogeneic model of GVHD and targeted depletion of these donor cells ameliorated GVHD. A depleting humanized anti-LT-α mAb, designated MLTA3698A, was generated that specifically binds to LT-α in both the soluble and membrane-bound forms, and elicits antibody-dependent cellular cytotoxicity (ADCC) activity in vitro. Using a human peripheral blood mononuclear cell transplanted SCID (Hu-SCID) mouse model of GVHD, the anti-human LT-α mAb specifically depleted activated LT-expressing human donor T and B cells, resulting in prolonged survival of the mice. A mutation in the Fc region, rendering the mAb incapable of mediating ADCC, abolished all in vitro and in vivo effects. These data support a role for using a depleting anti-LT-α antibody in treating immune diseases such as GVHD and autoimmune diseases

    Control of Alzheimer's Amyloid Beta Toxicity by the High Molecular Weight Immunophilin FKBP52 and Copper Homeostasis in Drosophila

    Get PDF
    FK506 binding proteins (FKBPs), also called immunophilins, are prolyl-isomerases (PPIases) that participate in a wide variety of cellular functions including hormone signaling and protein folding. Recent studies indicate that proteins that contain PPIase activity can also alter the processing of Alzheimer's Amyloid Precursor Protein (APP). Originally identified in hematopoietic cells, FKBP52 is much more abundantly expressed in neurons, including the hippocampus, frontal cortex, and basal ganglia. Given the fact that the high molecular weight immunophilin FKBP52 is highly expressed in CNS regions susceptible to Alzheimer's, we investigated its role in Aβ toxicity. Towards this goal, we generated Aβ transgenic Drosophila that harbor gain of function or loss of function mutations of FKBP52. FKBP52 overexpression reduced the toxicity of Aβ and increased lifespan in Aβ flies, whereas loss of function of FKBP52 exacerbated these Aβ phenotypes. Interestingly, the Aβ pathology was enhanced by mutations in the copper transporters Atox1, which interacts with FKBP52, and Ctr1A and was suppressed in FKBP52 mutant flies raised on a copper chelator diet. Using mammalian cultures, we show that FKBP52 (−/−) cells have increased intracellular copper and higher levels of Aβ. This effect is reversed by reconstitution of FKBP52. Finally, we also found that FKBP52 formed stable complexes with APP through its FK506 interacting domain. Taken together, these studies identify a novel role for FKBP52 in modulating toxicity of Aβ peptides

    Discovery of a Non-Peptidic Inhibitor of West Nile Virus NS3 Protease by High-Throughput Docking

    Get PDF
    An estimated 2.5 billion people are at risk of diseases caused by dengue and West Nile virus. As of today, there are neither vaccines to prevent nor drugs to cure the severe infections caused by these viruses. The NS3 protease is one of the most promising targets for drug development against West Nile virus because it is an essential enzyme for viral replication and because success has been demonstrated with the closely related hepatitis C virus protease. We have discovered a small molecule that inhibits the NS3 protease of West Nile virus by computer-aided high-throughput docking, and validated it using three experimental techniques. The inhibitor has potential to be developed to a drug candidate to combat West Nile virus infections

    Genome-Wide Association Study of White Blood Cell Count in 16,388 African Americans: the Continental Origins and Genetic Epidemiology Network (COGENT)

    Get PDF
    Total white blood cell (WBC) and neutrophil counts are lower among individuals of African descent due to the common African-derived “null” variant of the Duffy Antigen Receptor for Chemokines (DARC) gene. Additional common genetic polymorphisms were recently associated with total WBC and WBC sub-type levels in European and Japanese populations. No additional loci that account for WBC variability have been identified in African Americans. In order to address this, we performed a large genome-wide association study (GWAS) of total WBC and cell subtype counts in 16,388 African-American participants from 7 population-based cohorts available in the Continental Origins and Genetic Epidemiology Network. In addition to the DARC locus on chromosome 1q23, we identified two other regions (chromosomes 4q13 and 16q22) associated with WBC in African Americans (P<2.5×10−8). The lead SNP (rs9131) on chromosome 4q13 is located in the CXCL2 gene, which encodes a chemotactic cytokine for polymorphonuclear leukocytes. Independent evidence of the novel CXCL2 association with WBC was present in 3,551 Hispanic Americans, 14,767 Japanese, and 19,509 European Americans. The index SNP (rs12149261) on chromosome 16q22 associated with WBC count is located in a large inter-chromosomal segmental duplication encompassing part of the hydrocephalus inducing homolog (HYDIN) gene. We demonstrate that the chromosome 16q22 association finding is most likely due to a genotyping artifact as a consequence of sequence similarity between duplicated regions on chromosomes 16q22 and 1q21. Among the WBC loci recently identified in European or Japanese populations, replication was observed in our African-American meta-analysis for rs445 of CDK6 on chromosome 7q21 and rs4065321 of PSMD3-CSF3 region on chromosome 17q21. In summary, the CXCL2, CDK6, and PSMD3-CSF3 regions are associated with WBC count in African American and other populations. We also demonstrate that large inter-chromosomal duplications can result in false positive associations in GWAS

    A window into fungal endophytism in Salicornia europaea: deciphering fungal characteristics as plant growth promoting agents

    Get PDF
    Aim Plant-endophytic associations exist only when equilibrium is maintained between both partners. This study analyses the properties of endophytic fungi inhabiting a halophyte growing in high soil salinity and tests whether these fungi are beneficial or detrimental when non-host plants are inoculated. Method Fungi were isolated from Salicornia europaea collected from two sites differing in salinization history (anthropogenic and naturally saline) and analyzed for plant growth promoting abilities and non-host plant interactions. Results Most isolated fungi belonged to Ascomycota (96%) including dematiaceous fungi and commonly known plant pathogens and saprobes. The strains were metabolically active for siderophores, polyamines and indole-3-acetic acid (mainly Aureobasidium sp.) with very low activity for phosphatases. Many showed proteolytic, lipolytic, chitinolytic, cellulolytic and amylolytic activities but low pectolytic activity. Different activities between similar fungal species found in both sites were particularly seen for Epiccocum sp., Arthrinium sp. and Trichoderma sp. Inoculating the non-host Lolium perenne with selected fungi increased plant growth, mainly in the symbiont (Epichloë)-free variety. Arthrinium gamsii CR1-9 and Stereum gausapatum ISK3-11 were most effective for plant growth promotion. Conclusions This research suggests that host lifestyle and soil characteristics have a strong effect on endophytic fungi, and environmental stress could disturb the plant-fungi relations. In favourable conditions, these fungi may be effective in facilitating crop production in non-cultivable saline lands

    Positional Cloning of “Lisch-like”, a Candidate Modifier of Susceptibility to Type 2 Diabetes in Mice

    Get PDF
    In 404 Lepob/ob F2 progeny of a C57BL/6J (B6) x DBA/2J (DBA) intercross, we mapped a DBA-related quantitative trait locus (QTL) to distal Chr1 at 169.6 Mb, centered about D1Mit110, for diabetes-related phenotypes that included blood glucose, HbA1c, and pancreatic islet histology. The interval was refined to 1.8 Mb in a series of B6.DBA congenic/subcongenic lines also segregating for Lepob. The phenotypes of B6.DBA congenic mice include reduced β-cell replication rates accompanied by reduced β-cell mass, reduced insulin/glucose ratio in blood, reduced glucose tolerance, and persistent mild hypoinsulinemic hyperglycemia. Nucleotide sequence and expression analysis of 14 genes in this interval identified a predicted gene that we have designated “Lisch-like” (Ll) as the most likely candidate. The gene spans 62.7 kb on Chr1qH2.3, encoding a 10-exon, 646–amino acid polypeptide, homologous to Lsr on Chr7qB1 and to Ildr1 on Chr16qB3. The largest isoform of Ll is predicted to be a transmembrane molecule with an immunoglobulin-like extracellular domain and a serine/threonine-rich intracellular domain that contains a 14-3-3 binding domain. Morpholino knockdown of the zebrafish paralog of Ll resulted in a generalized delay in endodermal development in the gut region and dispersion of insulin-positive cells. Mice segregating for an ENU-induced null allele of Ll have phenotypes comparable to the B.D congenic lines. The human ortholog, C1orf32, is in the middle of a 30-Mb region of Chr1q23-25 that has been repeatedly associated with type 2 diabetes

    Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.

    Get PDF
    Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP
    corecore