331 research outputs found

    Constraints on the Dark Energy from the holographic connection to the small l CMB Suppression

    Get PDF
    Using the recently obtained holographic cosmic duality, we reached a reasonable quantitative agreement between predictions of the Cosmic Microwave Background Radiation at small l and the WMAP observations, showing the power of the holographic idea. We also got constraints on the dark energy and its behaviour as a function of the redshift upon relating it to the small l CMB spectrum. For a redshift independent dark energy, our constraint is consistent with the supernova results, which again shows the correctness of the cosmic duality prescription. We have also extended our study to the redshift dependence of the dark energy.Comment: accepted for publication in Phys. Lett.

    Cells Assemble Invadopodia-Like Structures and Invade into Matrigel in a Matrix Metalloprotease Dependent Manner in the Circular Invasion Assay

    Get PDF
    The ability of tumor cells to invade is one of the hallmarks of the metastatic phenotype. To elucidate the mechanisms by which tumor cells acquire an invasive phenotype, in vitro assays have been developed that mimic the process of cancer cell invasion through basement membrane or in the stroma. We have extended the characterization of the circular invasion assay and found that it provides a simple and amenable system to study cell invasion in matrix in an environment that closely mimics 3D invasion. Furthermore, it allows detailed microscopic analysis of both live and fixed cells during the invasion process. We find that cells invade in a protease dependent manner in this assay and that they assemble focal adhesions and invadopodia that resemble structures visualized in 3D embedded cells. We propose that this is a useful assay for routine and medium throughput analysis of invasion of cancer cells in vitro and the study of cells migrating in a 3D environment

    Dynamical dark energy with a constant vacuum energy density

    Get PDF
    We present a holographic dark-energy model in which the Newton constant GNG_{N} scales in such a way as to render the vacuum energy density a true constant. Nevertheless, the model acts as a dynamical dark-energy model since the scaling of GNG_{N} goes at the expense of deviation of concentration of dark-matter particles from its canonical form and/or of promotion of their mass to a time-dependent quantity, thereby making the effective equation of state (EOS) variable and different from -1 at the present epoch. Thus the model has a potential to naturally underpin Dirac's suggestion for explaining the large-number hypothesis, which demands a dynamical GNG_{N} along with the creation of matter in the universe. We show that with the aid of observational bounds on the variation of the gravitational coupling, the effective-field theory IR cutoff can be strongly restricted, being always closer to the future event horizon than to the Hubble distance. As for the observational side, the effective EOS restricted by observation can be made arbitrary close to -1, and therefore the present model can be considered as a ``minimal'' dynamical dark-energy scenario. In addition, for nonzero but small curvature (|\Omega_{k0}| \lsim 0.003), the model easily accommodates a transition across the phantom line for redshifts z \lsim 0.2 , as mildly favored by the data. A thermodynamic aspect of the scenario is also discussed.Comment: 14 pages, 2 figures, revised, title modified, references added, to appear in Phys. Lett.

    Fully gapped topological surface states in Bi2_2Se3_3 films induced by a d-wave high-temperature superconductor

    Full text link
    Topological insulators are a new class of materials, that exhibit robust gapless surface states protected by time-reversal symmetry. The interplay between such symmetry-protected topological surface states and symmetry-broken states (e.g. superconductivity) provides a platform for exploring novel quantum phenomena and new functionalities, such as 1D chiral or helical gapless Majorana fermions, and Majorana zero modes which may find application in fault-tolerant quantum computation. Inducing superconductivity on topological surface states is a prerequisite for their experimental realization. Here by growing high quality topological insulator Bi2_2Se3_3 films on a d-wave superconductor Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} using molecular beam epitaxy, we are able to induce high temperature superconductivity on the surface states of Bi2_2Se3_3 films with a large pairing gap up to 15 meV. Interestingly, distinct from the d-wave pairing of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}, the proximity-induced gap on the surface states is nearly isotropic and consistent with predominant s-wave pairing as revealed by angle-resolved photoemission spectroscopy. Our work could provide a critical step toward the realization of the long sought-after Majorana zero modes.Comment: Nature Physics, DOI:10.1038/nphys274

    Brane-World Gravity

    Get PDF
    The observable universe could be a 1+3-surface (the "brane") embedded in a 1+3+\textit{d}-dimensional spacetime (the "bulk"), with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the \textit{d} extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak (\sim TeV) level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity "leaks" into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes, and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review analyzes the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall--Sundrum models. We also cover the simplest brane-world models in which 4-dimensional gravity on the brane is modified at \emph{low} energies -- the 5-dimensional Dvali--Gabadadze--Porrati models. Then we discuss co-dimension two branes in 6-dimensional models.Comment: A major update of Living Reviews in Relativity 7:7 (2004) "Brane-World Gravity", 119 pages, 28 figures, the update contains new material on RS perturbations, including full numerical solutions of gravitational waves and scalar perturbations, on DGP models, and also on 6D models. A published version in Living Reviews in Relativit

    Conducting High-Value Secondary Dataset Analysis: An Introductory Guide and Resources

    Get PDF
    Secondary analyses of large datasets provide a mechanism for researchers to address high impact questions that would otherwise be prohibitively expensive and time-consuming to study. This paper presents a guide to assist investigators interested in conducting secondary data analysis, including advice on the process of successful secondary data analysis as well as a brief summary of high-value datasets and online resources for researchers, including the SGIM dataset compendium (www.sgim.org/go/datasets). The same basic research principles that apply to primary data analysis apply to secondary data analysis, including the development of a clear and clinically relevant research question, study sample, appropriate measures, and a thoughtful analytic approach. A real-world case description illustrates key steps: (1) define your research topic and question; (2) select a dataset; (3) get to know your dataset; and (4) structure your analysis and presentation of findings in a way that is clinically meaningful. Secondary dataset analysis is a well-established methodology. Secondary analysis is particularly valuable for junior investigators, who have limited time and resources to demonstrate expertise and productivity

    Rheumatoid arthritis, gold therapy, contact allergy and blood cytokines

    Get PDF
    OBJECTIVE: To study the clinical and biochemical effects of a low starting dose for gold therapy in rheumatoid arthritis patients with a contact allergy to gold. METHODS: Serum cytokines were assayed before and 24 h after the first injection of gold sodium thiomalate (GSTM). RESULTS: Contact allergy to gold was found in 4 of 19 patients. Compared to gold-negative patients (starting dose: 10 mg GSTM), there was a larger increase in serum TNFalpha (p < 0.05), sTNF-R1 (NS), and IL-1 ra (p < 0.05) in gold-allergic patients. CONCLUSIONS: Cytokines are released in blood by GSTM in RA patients with gold allergy. To minimize the risk of acute adverse reactions the starting dose of GSTM should be lowered to 5 mg. Alternatively, patients should be patch-tested before gold therapy; in test-positive cases, 5 mg is recommended as the first dose

    An Atlas for Schistosoma mansoni Organs and Life-Cycle Stages Using Cell Type-Specific Markers and Confocal Microscopy

    Get PDF
    Schistosomiasis (bilharzia) is a tropical disease caused by trematode parasites (Schistosoma) that affects hundreds of millions of people in the developing world. Currently only a single drug (praziquantel) is available to treat this disease, highlighting the importance of developing new techniques to study Schistosoma. While molecular advances, including RNA interference and the availability of complete genome sequences for two Schistosoma species, will help to revolutionize studies of these animals, an array of tools for visualizing the consequences of experimental perturbations on tissue integrity and development needs to be made widely available. To this end, we screened a battery of commercially available stains, antibodies and fluorescently labeled lectins, many of which have not been described previously for analyzing schistosomes, for their ability to label various cell and tissue types in the cercarial stage of S. mansoni. This analysis uncovered more than 20 new markers that label most cercarial tissues, including the tegument, the musculature, the protonephridia, the secretory system and the nervous system. Using these markers we present a high-resolution visual depiction of cercarial anatomy. Examining the effectiveness of a subset of these markers in S. mansoni adults and miracidia, we demonstrate the value of these tools for labeling tissues in a variety of life-cycle stages. The methodologies described here will facilitate functional analyses aimed at understanding fundamental biological processes in these parasites

    Experimental biogeography: the role of environmental gradients in high geographic diversity in Cape Proteaceae

    Get PDF
    One of the fundamental dimensions of biodiversity is the rate of species turnover across geographic distance. The Cape Floristic Region of South Africa has exceptionally high geographic species turnover, much of which is associated with groups of closely related species with mostly or completely non-overlapping distributions. A basic unresolved question about biodiversity in this global hotspot is the relative importance of ecological gradients in generating and maintaining high geographic turnover in the region. We used reciprocal transplant experiments to test the extent to which abiotic environmental factors may limit the distributions of a group of closely related species in the genus Protea (Proteaceae), and thus elevate species turnover in this diverse, iconic family. We tested whether these species have a “home site advantage” in demographic rates (germination, growth, mortality), and also parameterized stage-structured demographic models for the species. Two of the three native species were predicted to have a demographic advantage at their home sites. The models also predicted, however, that species could maintain positive population growth rates at sites beyond their current distribution limits. Thus the experiment suggests that abiotic limitation under current environmental conditions does not fully explain the observed distribution limits or resulting biogeographic pattern. One potentially important mechanism is dispersal limitation, which is consistent with estimates based on genetic data and mechanistic dispersal models, though other mechanisms including competition may also play a role
    corecore