882 research outputs found

    Connectionist perspectives on language learning, representation and processing.

    Get PDF
    The field of formal linguistics was founded on the premise that language is mentally represented as a deterministic symbolic grammar. While this approach has captured many important characteristics of the world\u27s languages, it has also led to a tendency to focus theoretical questions on the correct formalization of grammatical rules while also de-emphasizing the role of learning and statistics in language development and processing. In this review we present a different approach to language research that has emerged from the parallel distributed processing or \u27connectionist\u27 enterprise. In the connectionist framework, mental operations are studied by simulating learning and processing within networks of artificial neurons. With that in mind, we discuss recent progress in connectionist models of auditory word recognition, reading, morphology, and syntactic processing. We argue that connectionist models can capture many important characteristics of how language is learned, represented, and processed, as well as providing new insights about the source of these behavioral patterns. Just as importantly, the networks naturally capture irregular (non-rule-like) patterns that are common within languages, something that has been difficult to reconcile with rule-based accounts of language without positing separate mechanisms for rules and exceptions

    Processing-Induced Disorder in Pharmaceutical Materials

    Get PDF
    This chapter focuses on the major types of pharmaceutical processing methods that have been widely reported to produce disordered material either intentionally or unintentionally. Milling is one of the most frequently used unit operations used by the pharmaceutical industry for reducing the particle size of solids. Thermal processing techniques are mainly used for controlling or improving the release and the subsequent bioavailability of an active pharmaceutical ingredient (API). Techniques such as melt-mixing, spray-congealing, sintering, melt-granulation, and hot-melt extrusion (HME) have developed and evolved rapidly for large-scale pharmaceutical production. Solvent-evaporation-based methods are important processing techniques for both raw materials, such as crystallization of the raw drug, and formulation manufacturing in the pharmaceutical industry. The chapter discusses the processing that can potentially induce the formation of the disordered state during the manufacture of formulations. The widely used solvent-evaporation-based processing techniques in pharmaceutical formulation production include spray-drying, freeze-drying, film casting, and film coating

    ICRPfinder: a fast pattern design algorithm for coding sequences and its application in finding potential restriction enzyme recognition sites

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Restriction enzymes can produce easily definable segments from DNA sequences by using a variety of cut patterns. There are, however, no software tools that can aid in gene building -- that is, modifying wild-type DNA sequences to express the same wild-type amino acid sequences but with enhanced codons, specific cut sites, unique post-translational modifications, and other engineered-in components for recombinant applications. A fast DNA pattern design algorithm, ICRPfinder, is provided in this paper and applied to find or create potential recognition sites in target coding sequences.</p> <p>Results</p> <p>ICRPfinder is applied to find or create restriction enzyme recognition sites by introducing silent mutations. The algorithm is shown capable of mapping existing cut-sites but importantly it also can generate specified new unique cut-sites within a specified region that are guaranteed not to be present elsewhere in the DNA sequence.</p> <p>Conclusion</p> <p>ICRPfinder is a powerful tool for finding or creating specific DNA patterns in a given target coding sequence. ICRPfinder finds or creates patterns, which can include restriction enzyme recognition sites, without changing the translated protein sequence. ICRPfinder is a browser-based JavaScript application and it can run on any platform, in on-line or off-line mode.</p

    Characterizations of how species mediate ecosystem properties require more comprehensive functional effect descriptors

    Get PDF
    The importance of individual species in mediating ecosystem process and functioning is generally accepted, but categorical descriptors that summarize species-specific contributions to ecosystems tend to reference a limited number of biological traits and underestimate the importance of how organisms interact with their environment. Here, we show how three functionally contrasting sediment-dwelling marine invertebrates affect fluid and particle transport - important processes in mediating nutrient cycling - and use high-resolution reconstructions of burrow geometry to determine the extent and nature of biogenic modification. We find that individual functional effect descriptors fall short of being able to adequately characterize how species mediate the stocks and flows of important ecosystem properties and that, in contrary to common practice and understanding, they are not substitutable with one another because they emphasize different aspects of species activity and behavior. When information derived from these metrics is combined with knowledge of how species behave and modify their environment, however, detailed mechanistic information emerges that increases the likelihood that a species functional standing will be appropriately summarized. Our study provides evidence that more comprehensive functional effect descriptors are required if they are to be of value to those tasked with projecting how altered biodiversity will influence future ecosystems

    MEK1 drives oncogenic signaling and interacts with PARP1 for genomic and metabolic homeostasis in malignant pleural mesothelioma.

    Get PDF
    Malignant pleural mesothelioma (MPM) is a lethal malignancy etiologically caused by asbestos exposure, for which there are few effective treatment options. Although asbestos carcinogenesis is associated with reactive oxygen species (ROS), the bona fide oncogenic signaling pathways that regulate ROS homeostasis and bypass ROS-evoked apoptosis in MPM are poorly understood. In this study, we demonstrate that the mitogen-activated protein kinase (MAPK) pathway RAS-RAF-MEK-ERK is hyperactive and a molecular driver of MPM, independent of histological subtypes and genetic heterogeneity. Suppression of MAPK signaling by clinically approved MEK inhibitors (MEKi) elicits PARP1 to protect MPM cells from the cytotoxic effects of MAPK pathway blockage. Mechanistically, MEKi induces impairment of homologous recombination (HR) repair proficiency and mitochondrial metabolic activity, which is counterbalanced by pleiotropic PARP1. Consequently, the combination of MEK with PARP inhibitors enhances apoptotic cell death in vitro and in vivo that occurs through coordinated upregulation of cytotoxic ROS in MPM cells, suggesting a mechanism-based, readily translatable strategy to treat this daunting disease. Collectively, our studies uncover a previously unrecognized scenario that hyperactivation of the MAPK pathway is an essential feature of MPM and provide unprecedented evidence that MAPK signaling cooperates with PARP1 to homeostatically maintain ROS levels and escape ROS-mediated apoptosis

    Animal-related factors associated with moderate-to-severe diarrhea in children younger than five years in western Kenya: A matched case-control study

    Get PDF
    Background Diarrheal disease remains among the leading causes of global mortality in children younger than 5 years. Exposure to domestic animals may be a risk factor for diarrheal disease. The objectives of this study were to identify animal-related exposures associated with cases of moderate-to-severe diarrhea (MSD) in children in rural western Kenya, and to identify the major zoonotic enteric pathogens present in domestic animals residing in the homesteads of case and control children. Methodology/Principal findings We characterized animal-related exposures in a subset of case and control children (n = 73 pairs matched on age, sex and location) with reported animal presence at home enrolled in the Global Enteric Multicenter Study in western Kenya, and analysed these for an association with MSD. We identified potentially zoonotic enteric pathogens in pooled fecal specimens collected from domestic animals resident at children’s homesteads. Variables that were associated with decreased risk of MSD were washing hands after animal contact (matched odds ratio [MOR] = 0.2; 95% CI 0.08–0.7), and presence of adult sheep that were not confined in a pen overnight (MOR = 0.1; 0.02–0.5). Variables that were associated with increased risk of MSD were increasing number of sheep owned (MOR = 1.2; 1.0–1.5), frequent observation of fresh rodent excreta (feces/urine) outside the house (MOR = 7.5; 1.5–37.2), and participation of the child in providing water to chickens (MOR = 3.8; 1.2–12.2). Of 691 pooled specimens collected from 2,174 domestic animals, 159 pools (23%) tested positive for one or more potentially zoonotic enteric pathogens (Campylobacter jejuni, C. coli, non-typhoidal Salmonella, diarrheagenic E. coli, Giardia, Cryptosporidium, or rotavirus). We did not find any association between the presence of particular pathogens in household animals, and MSD in children. Conclusions and significance Public health agencies should continue to promote frequent hand washing, including after animal contact, to reduce the risk of MSD. Future studies should address specific causal relations of MSD with sheep and chicken husbandry practices, and with the presence of rodents
    corecore