24 research outputs found

    Molecular analysis of the vaginal response to estrogens in the ovariectomized rat and postmenopausal woman

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vaginal atrophy (VA) is the thinning of the vaginal epithelial lining, typically the result of lowered estrogen levels during menopause. Some of the consequences of VA include increased susceptibility to bacterial infection, pain during sexual intercourse, and vaginal burning or itching. Although estrogen treatment is highly effective, alternative therapies are also desired for women who are not candidates for post-menopausal hormone therapy (HT). The ovariectomized (OVX) rat is widely accepted as an appropriate animal model for many estrogen-dependent responses in humans; however, since reproductive biology can vary significantly between mammalian systems, this study examined how well the OVX rat recapitulates human biology.</p> <p>Methods</p> <p>We analyzed 19 vaginal biopsies from human subjects pre and post 3-month 17β-estradiol treated by expression profiling. Data were compared to transcriptional profiling generated from vaginal samples obtained from ovariectomized rats treated with 17β-estradiol for 6 hrs, 3 days or 5 days. The level of differential expression between pre- vs. post- estrogen treatment was calculated for each of the human and OVX rat datasets. Probe sets corresponding to orthologous rat and human genes were mapped to each other using NCBI Homologene.</p> <p>Results</p> <p>A positive correlation was observed between the rat and human responses to estrogen. Genes belonging to several biological pathways and GO categories were similarly differentially expressed in rat and human. A large number of the coordinately regulated biological processes are already known to be involved in human VA, such as inflammation, epithelial development, and EGF pathway activation.</p> <p>Conclusion</p> <p>At the transcriptional level, there is evidence of significant overlap of the effects of estrogen treatment between the OVX rat and human VA samples.</p

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Five insights from the Global Burden of Disease Study 2019

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a rules-based synthesis of the available evidence on levels and trends in health outcomes, a diverse set of risk factors, and health system responses. GBD 2019 covered 204 countries and territories, as well as first administrative level disaggregations for 22 countries, from 1990 to 2019. Because GBD is highly standardised and comprehensive, spanning both fatal and non-fatal outcomes, and uses a mutually exclusive and collectively exhaustive list of hierarchical disease and injury causes, the study provides a powerful basis for detailed and broad insights on global health trends and emerging challenges. GBD 2019 incorporates data from 281 586 sources and provides more than 3.5 billion estimates of health outcome and health system measures of interest for global, national, and subnational policy dialogue. All GBD estimates are publicly available and adhere to the Guidelines on Accurate and Transparent Health Estimate Reporting. From this vast amount of information, five key insights that are important for health, social, and economic development strategies have been distilled. These insights are subject to the many limitations outlined in each of the component GBD capstone papers.Peer reviewe

    A systematic review of non-hormonal treatments of vasomotor symptoms in climacteric and cancer patients

    Get PDF

    Identification and sequence analysis of chicken Toll-like receptors

    No full text
    Toll-like receptors (TLRs) play an important role in the recognition of microbial components. Only chicken TLR2 and -4 have been reported in the literature. The objectives of this study were to identify new chicken TLRs and to evaluate evolutionary significance of these receptors. Searching chicken genomic databases and DNA sequencing revealed five new TLRs, TLR1 (type 1 and 2), -3, -5, and -7. No chicken orthologues of mammalian TLR8, -9, or -10 were found. As in mammals, all chicken TLRs (chTLRs) share identical protein secondary structure that consists of several leucine-rich domains, a transmembrane domain, and Toll/Interleukin-1 receptor domain(s). Phylogenetic analyses indicate that the identified chTLR genes are the orthologues of TLRs in mammals. Analyses of the number of synonymous substitutions per synonymous site and nonsynonymous substitutions per nonsynonymous site indicate that the nucleotide sequences coding for the leucine-rich repeats of chicken TLR1 type 1 and type 2 were significantly under positive Darwinian selection. In contrast, the sequences of other TLRs were under purifying selection. These results support the hypothesis that one of the major evolutionary strategies of the innate immune system is to recognize a few highly conserved microbial components with several conserved TLRs. The results also indicate that the sequence changes in the ligand-binding domains of TLR1 in chickens provide adaptive advantages during evolution.Ahmet Yilmaz, Shixue Shen, David L. Adelson, Suresh Xavier and James J. Zh
    corecore