Title Page containing ALL Author Contact Info.

Empirical Evaluation of the Effects of Experience on Code Quality and
Programmer Productivity: An Exploratory Study

Oscar Dieste, Universidad Politécnica de Madrid, odieste@fi.upm.es
Escuela Técnica Superior de Ingenieros en Informatica

Universidad Politécnica de Madrid

Campus de Montegancedo

28660 Boadilla del Monte, Spain

Alejandrina M. Aranda, Universidad Politécnica de Madrid, alearanda@gmail.com
Escuela Técnica Superior de Ingenieros en Informatica

Universidad Politécnica de Madrid

Campus de Montegancedo

28660 Boadilla del Monte, Spain

Fernando Uyaguari, Universidad Politécnica de Madrid, fuyaguariOl@gmail.com
Escuela Técnica Superior de Ingenieros en Informatica

Universidad Politécnica de Madrid

Campus de Montegancedo

28660 Boadilla del Monte, Spain

Burak Turhan, University of Oulu, Burak. Turhan@oulu.fi
Department of Information Processing Science,

P. 0. Box 3000

90014 University of Oulu, Finland

Ayse Tosun, Istanbul Technical University, tosunmisirli@itu.edu.tr
Faculty of Computer & Informatics

Istanbul Technical University

34469 Maslak Istanbul, Turkey

Davide Fucci, University of Oulu, Davide.Fucci@oulu.fi
Department of Information Processing Science,

P. O. Box 3000

90014 University of Oulu, Finland

Markku Oivo, University of Oulu, Markku.Oivo@oulu.fi
Department of Information Processing Science,

P. 0. Box 3000

90014 University of Oulu, Finland

Natalia Juristo, University of Oulu and Universidad Politécnica de Madrid, Natalia.Juristo@oulu.fi
Escuela Técnica Superior de Ingenieros en Informatica

Universidad Politécnica de Madrid

Campus de Montegancedo

28660 Boadilla del Monte, Spain

Department of Information Processing Science,
P. O. Box 3000
90014 University of Oulu, Finland

Manuscript Click here to view linked References *

Empirical Evaluation of the Effects of Experience on Code Quality and

1 ..

) Programmer Productivity: An Exploratory Study

3

4

5 Abstract.

6 Context. There is a widespread belief in both SE and other branches of science that experience helps

7 professionals to improve their performance. However, cases have been reported where experience not only does

8 not have a positive influence but sometimes even degrades the performance of professionals. 4im. Determine

9 whether years of experience influence programmer performance. Method. We have analysed 10 quasi-experiments
10 executed both in academia with graduate and postgraduate students and in industry with professionals. The
11 experimental task was to apply ITLD on two experimental problems and then measure external code quality and
12 programmer productivity. Results. Programming experience gained in industry does not appear to have any effect
13 whatsoever on quality and productivity. Overall programming experience gained in academia does tend to have a
14 positive influence on programmer performance. These two findings may be related to the fact that, as opposed to
15 deliberate practice, routine practice does not appear to lead to improved performance. Experience in the use of
16 productivity tools, such as testing frameworks and IDE also has positive effects. Conclusion. Years of experience
17 are a poor predictor of programmer performance. Academic background and specialized knowledge of task-related
18 aspects appear to be rather good predictors.
19
20 Keywords: experience, industry, academy, programming, iterative test-last development, external quality,
21 productivity, performance
22
23
24 1 Introduction
25
26 The older you are, the wiser you get;, An old ox makes a straight furrow; They who live longest will see most: the
27 passage of time is, proverbially, one and perhaps the major factor facilitating learning. This factor is none other than
28 experience.
29 Things are not very different in software engineering (SE) either. Some people within an organization know more
30 or better, and their participation in the project can be vital to its success (e.g., (B. Curtis, Krasner, & Iscoe, 1988)).
31 These truisms are backed up by a large number of papers in a range of SE areas, e.g., requirements (Marakas & Elam,
3:23 1998), design (Sonnentag, 1998), usability (MacDorman, Whalen, Ho, & Patel, 2011) or testing (Chmiel & Loui,
32 2004), where it is generally agreed that experience makes the difference with respect to practitioner performance.
35 There are two different definitions of experience (Merriam-Webster, 2015): (1) skill or knowledge that you get by
36 doing something, and (2) the length of time that you have spent doing something (such as a particular job). The two
37 definitions mirror the fact that experience is a theoretical construct: the substance of experience (skills, knowledge)
38 cannot be directly observed, and its existence has to be estimated, where the length of time that a subject has been
39 performing a particular task is the most obvious and easiest-to-measure operationalization. Accordingly, it is common
40 practice to divide subjects into two groups: (1) experts, whose characteristic is that they have been working in an area
41 for quite a long time, typically years, and (2) novices who not been working in the field for very long.
2:23 Focusing on SE, programming, which is the area addressed in this paper, is the field where most evidence for the
44 beneficial effects of experience has been found. To cite just a few examples, expert programmers are quicker at
45 identifying valid sentences in a programming language (Wiedenbeck, 1985), more accurately remember meaningful
46 code snippets (McKeithen, Reitman, Rueter, & Hirtle, 1981) or have more sophisticated reasoning strategies than
47 novices (Jeffries, Turner, Polson, & Atwood, 1981). These results match the findings for other areas of SE (e.g., cited
48 above), and other fields outside SE, e.g., physics (Larkin, McDermott, Simon, & Simon, 1980). Until quite recently at
49 least, it looked as if achieving expert performance was the inevitable result of a length of service from around ten
50 years in an area (Ericsson, 2006a).
o1 Later research into experience has tinged the above picture. The key difference between the previous and present
52 conception of experience is the intensity of practice. Activity execution does not in itself appear to lead to
o3 improvements in a subject’s performance; improvements come when a deliberate effort is made in order to improve
o4 performance (Ericsson, 2006b). In fact, performance has even been found to drop as experience increases (Ericsson,
95 2006a). This should not come as a surprise. Surely everyone can think of someone that they know who has a lot of
o6 experience but is a poor performer. There are some (not very many) SE studies that conclude that there no differences
o7 of performance between experts and novices, e.g., (Agarwal & Tanniru, 1991). Some of these studies also focus on
gg programming (Adelson, 1984).
60 There is therefore a lot of uncertainty surrounding whether experience is associated with better performance. As
61 regards programming, this uncertainty is especially worrying because: (1) programming, together with testing, are
62
63
64

[e)}
ul

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

quantitatively the most important activities in the software development process, and (2) experience is one of the key
variables used by employers to hire programmers. The aim of this paper is to determine whether expert programmers
exhibit better performance than novice programmers. To do this, we have conducted a series of quasi-experiments
analysing the quality of the generated code by programmers and programmer productivity depending on their years of
experience. We collected data at four companies and three universities from a total of 115 programmers with a range
of experiences, averaging from 0 to 10 years. A key issue is the inclusion of professional programmers currently
working in industry, as many earlier studies were conducted without access to real programmers (Votta, 1994).

Our results suggest that: (1) experience gained in industry is not related to better quality or higher productivity, (2)
secondary issues, like familiarity with the unit testing framework or integrated development environments (IDE),
appear to have quite a positive effect on quality and productivity, and (3) academic learning, which could be
considered as an instance of deliberate practice, does influence quality and productivity as opposed to on-the-job
learning.

The conclusion from our findings is that years of experience are a poor predictor of programmer performance. In
turn, academic background (probably also formal training courses in industry) and knowledge of specialized task-
related aspects (e.g., the IDE in our case) are good predictors.

This paper is structured as follows. Section 2 briefly describes research into the effects of experience, focusing
especially on programming. Section 3 describes the family of experiments. Section 4 describes the working
hypotheses and working methodology. Section 4 describes the quasi-experiments, characteristics of the collected
data, and the choice of the best-suited statistical analysis method. Section 5 reports the results of the linear analysis,
whereas Section 6 reports the nonlinear analysis; both are discussed in Section 7. The paper ends with a discussion of
the validity threats and conclusions in Section 8 and 9, respectively.

2 Background

The study of experience goes way back. The original aim was to determine which factors caused expert subjects to
perform better than novices. Studies by (De Groot, 1978) revealed that experts had two key characteristics in
common: an in-depth knowledge of their field of expertise and a long length of service in the area. (Chase & Simon,
1973) formalized experience as a process by means of which, over time, experts acquired knowledge that they stored
as complex mental patterns and that they used to quickly and effectively solve problems in their area of expertise.
Experience had nothing to do with natural talent, such as intelligence, and was very specialized, that is, it was not
transferable from one area to another (Colvin, 2008). Related literature reports that it takes around 10 years or 10,000
working hours to acquire a substantial amount of patterns, although this is by no means a fixed number and depends
on the area and type of instruction received (K. A. Ericsson, Krampe, & Tesch-Romer, 1993). For quite some time,
therefore, experience was assumed to be a natural consequence of the passage of time (Ericsson, 2006a). From this
viewpoint, experience could be likened to a measure of time, e.g., the above 10 years of service.

SE has also studied experience ever since the early days of the discipline. The focus in the 1980s was on
programming and low-level design (B. Curtis, 1984). Since then, however, experience has been studied in almost all
areas of SE: requirements (Marakas & Elam, 1998), design (Sonnentag, 1998), usability (MacDorman et al., 2011),
testing (Chmiel & Loui, 2004), etc.

A weakness of the study of experience in SE is that there are hardly any synthesis papers. (B. Curtis, 1984)
conducted a broad literature review, which is, however, completely out of date today. (Mayer, 1997) reviewed 33
studies on the effect of experience on programing published prior to 1997 but, since then, a number of similar studies
have been published (e.g., (Lui & Chan, 2006)). (Siegmund, Késtner, Liebig, Apel, & Hanenberg, 2014) conducted a
review on how to measure programming experience, but without any reference to expert-novice behaviour.

As opposed to an exhaustive state of the art, which is beyond the scope of this paper, Table 1 shows a summary of
the existing studies that address the effects of experience in programming. Programming is a rather complex area, in
which a diversity of notations, languages, design approaches, programming techniques, etc. have been investigated.
In Table 1, we have included only studies that explore programming abilities. For instance, (Burkhardt, DA©tienne,
& Wiedenbeck, 1997) examines the mental representations of objects (in a program). This study seems to be
exploring a design but not a programming aspect, and therefore has not been included in Table 1. In the same vein (F.
Ricca, M. Di Penta, M. Torchiano, P. Tonella, & M. Ceccato, 2007), investigates the impact of annotations in UML
diagrams, depending on the subjects’ experience. Again, this study has been excluded because it analyses a modelling
but not a programming feature.

The studies in Table 1 have the following characteristics:

PI[[0IUS dIoM

woym Jo [[e
‘Sunuwesdoxd ur Aoeo1y3o-Jjos ured SJUOPMNIS 9OUIIIS
01 AQUapU) B ST 9I9Y) ‘SOSBAIIUL TeaK 1811y 07 (
dousnadxoe 19ndwod oY) sy) mmmw
‘Supuweigord YAV ut £oeongo 9IS JAYI'T L O 'S9100S AJBO1JJO-J[O s1eaA 9oudLIadx “Spuounedop Koain M\E
'$9109S AoeOIJJo-J[os 119y} [-Jjos Surpre3ar asreuuonsanb e romsuy [EOS MOAT L O} 1 $IoIIRS : q Suneouidud S m
0] UONNQLIUOD IBAUI| JUBIIUTIS [elnsnpur . M%
® pey] s1ndwod [yIIm pery Judpnis e PUE ‘SOTUOIOIQ ISV)
9oua110dX? JO SIBA JO JoquInu oYy [, ‘1oyndwod
1) WO SJUIPMNYS
182K 1811} 00T
“Aypeuonouny ASMN
paarnbai oy passassod K 0g-1 !
: $SOUJ0aILI0)) | . I aqols
wei3oid paurejurewr ared “IK [Z-(:PU] :S)UB)MSUOD ~
‘[eU1j 9y} 10U 1O JAYIYA BAB[[BUOISSIJOId I0THIS Io1uag .M L
-asnIodxo rowueisord - as
: 9poo weisoxd . . juowodxy | ‘eqhAQq
uo puadop jou op S[enpIATpUI d 1K $7-0 ared S)eIpOULIAIU] i
d usemioq seousIIC] BAR[UO SYSB) 90UBUIUIBUI ULIOLIdJ 1901100 & dojaaap 0} yopa 1K 9z-0 -PU] :oYeIpaULIBN] -1senQ) L
pue sie 9 ! uaye) sinoy| Jowwerdord “pul -orel sI[[en
JO Ioquuinu [ejo], " Jorung ‘H
S G7-0 :I1ed “IK €Z-0 :pyl :dounp wio
93ueyd Jo 30s & woj1d uoneing o ’ A ysiuy
0} udye) own pasderg q)
(1861
‘pasels A[a31e] oI
QIoM SOIUIIJJIP 2I1A0U-}I2dXD ‘wresgoxd “IY () :SINAON SOJIAON B m
oy ‘swrerdord pajquueids ayy 10 AU} [[BO21 0] SAINUIW ¢ UIAIT d1oM “IOPIO QATIR[I o M»
UQy) pue ‘sajnuiw g Ioj I9p1o pajquierds | 1odoid 1oy) ur wieqroa 1eoay ‘Buruweidord | sojerpowoiu] €7 | juowLddxyg ¥ ,:M
*SOOTAOU AU} SE SoUI| AUBWI Se | 1O [BULIOU JoyIo ul pajuadsard werdold | uapuIm Saul JO JqUInN [e10ua3 Jo "Iy 00T pue S
soury a1y Ajjewrxoidde poqesar | TOOTV 2UIl-[€ B pamaia syuedionied M TODTV Ul "Iy 00% :s3dadxy suadxg 9 it M
syodxo ‘swerord [ewiou ay) 10 S
SOW)
‘Suruweigord O ur 9s1n0o ouo (
"UOIIBAID SALI0TA)BD PUB SULID) Sunuwessord sondwon)M S)BNPRISIOPUN (SIIIAON SOAAONOT | Jrormza dxg @02
uoamIdq sdigsuorye[ar Sururyop w s1deou0s SSOUDAIEIoL oU1 o18 9IS AT 9 03 () sSuney Lms:O Apu
U0 SAJTAOU JBq $11adXa oy, D sy £€cd PIEIRT A} 218 *9ouo10s 1Indwod syedxyg 01 : JATeS
ur syuapmys ajenpers :spradxy % 94)
-douaLdxd
"SOJIAOU AU} UBY[) SA)BI JOLID SjuowiBos ‘soouojues Jurwwerdord | Funuwreidord Iy 0o :$99IAON SIOIAON 01 (861
y 9poo padA10a193s o1duurs Jo uorouny : : R : |
IOMO] % ()} Pey pue I9)seJ 9%,G7 ;) AJreonoejuAs Sunerousd juowrodx s
pue a1onns) Jo Surpue)sIdpUn : : . : 22quo
Aroyewnrxoxdde orom suradxo oy], 10§ Aoenode pue paadg dououadxe Surweigoxd syadxyg 01
PUE SIOLId J1}OBIUAS JO UONTUS00Y . P PIIM)
14 000°1 1 :spradxy
S)NSayY Yse) [epuamLdxy JLIPIA JlqeLieA Juspuadaq dIqeLie A Judpuadapuy s12a[qngy ApmS IEX

sorpnys [eornduwe paje[ay T d[qel

G9
79
€9
29
19
09
68
8G
LS
99
qq
A
€q
49
18
0§
3%
87
Ly
9v
N7
vy
(974
A%
v
0v
6€
8¢
LE
9¢€
G¢
/43
€€
43
T¢
0¢
6¢
8¢
Le
9¢
G¢
ve
€cC
x4
N4
0¢
6T
8T
LT
91
CT

14
S[] AI9A QJRUTWLIISIP SITAON [9ANEIIPUI MOY| 0} SB 9POD JO SAUI| ey J[eas 11T 9 03 (| uay) a1om siourwerdoid oy, "SJuOpMIS S :IMA0N | s1owwerdold i [juownadxg | so1))
‘sa13ojopoyow
Suruwrersoxd pue Surwweisord
SUIQISAS Ul SIOIUAS pue siorunf
a1om dnoi3 padueApe oy [,
1 reosed Suisn wajqoid ‘(es1n09 o3enue| Ajquiosse
1]} 9A[OS 0} POYSE AIOM J[eY IO o1} ue I0 [edsed SuIsn asInod Amwmﬁﬂ
‘dnoi3 pooueape | o[iym ‘wajqoid oy} paajos jeyy wejoxd SOINJONIS BIEP B IOYID ““F°9) olll 4
Y} 10} 9%, ¢g 03 dnoi3 arerpawrdiul [Bosed © 9)LIM 0} POYSE 1M SIUIPNIS 1dLdsnuvut £ Suruweidoid ur 9S1n09 puodds f :mm
¢ . JBINOOY syuapni§ | Juownddxyg b
Y3 10J %61 03 dnoig do1A0U O} Jrey ‘ared puodss oy ayp uf “wdjqoid yy u1 paurfap JoN & 3no1y) SpIIYI-om} A[JUALIND reuog
10} %6 wolj saroiduwr £oeIndoy PaJels o) 9AJ0S pinom Jey ueld SIUOPMIS QIOM SI)BRIPIULINU] Cem
® 9JLIM 0) PIYSe d1om Aatp “‘ured 1s11j o) op0s)
uf 1591 1ed-0M) B UOAIS 210M SJuopmI§ *I9JSAUWIAS oY) YSnoIyy 10§
Kem oy} Jo s1ouenb-oa1y)
Pa1Ino0 s1y) ‘syonnsuod Jurdoog
om} 10130 a3 pue doof [Iym
Ay Yim doualIadxo pey pue
INOQE Jy3ne) usdq Pey SINAON
"9oueuLIO)Iod)M 9)B[o1I00 ‘(uonjed1yIpOWw
j0u pIp dousLRdxd Surwrergord oy 939]dwiod UONBOIJIPOIA s1edk SurweIsord
JO s1eak Jo Joquunu oy, 07) 9WIT) 1991109 JUIOIdJ (6L61
“1oded QA0
JO 129 Jue[q UO AIOWAUI WO PO ¥
JudreAInbo AJfeuonoUNy S}ONISUOII stowmesSord | juowmadie ‘uewt
. 0} sajnuIw ()7 uQAIS sem juedionted : A
douetIo)1ad IIm 2)e[o1I0 . ded . K11oa1100 [euoIsSJ0IJ -1senQ) .
j0u pIp dousndxd Surwrergord d Hove v:wmvuwoozmo Eo\wwu v PoIIEoaL AR uorsuayaiduwo)) s1edk SuruweIsord
10 $180K 30 J0qUING S e10s [e pue H.bE o1d oty ‘porrad Apmys SIUOUIONE)S JO JUAIIOJ mwtso
JO Pud o} 1y "SMRUYOMO[J MEBIP IO SIJ0U pred
ayew pInod Aoy) awn yorym Suunp doyg)
‘swerdod [e19A9s Apmys 03 saynuIw
GZ pamorre a1om syuedroned oy,
. "9SIN0J dUIes A
[[£021J0 351Nq 9IS uny) 10} smof[eJ Suryoes) :spradxy
-SYUNUo B UL SWajl JO JoqunN ’ ’ (1861
. Aung X i SAIIAON § ‘uo
[Teo91 J93Ie] PRy PUB ‘SO9IAOU 9p09 Tdd JO saul| 9] Sul[[eody 1dd W Surwweisold : Juowiadxg -
AU} UBY) QIO PI[[BIAI $1I0dXd Y], ‘paqedar — 101ndwoo ur 9SIN0o A1039Nponul N)
SUWIO) JO IOqUINU A, ue pajorduwiod jsnf pey
oyMm S9JeNpeISIopUn :SIIAON
‘SjuapN)s
Suneouidud
1dwos
189K y}Inoj pue
Py “pu0d3s 90 |
"9SIN0d
Surwwresgoxd
eAe[A10jonpoxur
ue ug
S)MSAY yse) [eyudmIdxy PN dlqerie A Judpuddaq J[qerie A Juapuddapug $393[qng# ApmS P

G9
79
€9
29
19
09
68
8G
LS
99
qq
A
€q
49
18
0§
3%
87
Ly
9v
N7
vy
(974
A%
v
0v
6€
8¢
LE
9¢€
G¢
/43
€€
43
T¢
0¢
6¢
8¢
Le
9¢
G¢
ve
€cC
x4
N4
0¢
6T
8T
LT
91
CT

‘uefd oy no paured werdord

91} MOY JO S[TIOp 9IBJINS UO POSNIO] *9SIN0d
‘suonsanb | suonsanb ajo10u0) ‘weidod oy Jo uerd qwies o) JO SMO[[J :31adxy suadyx 4861
9J215U00 U0 193399 pauriojiod SuIA[1opun 2y} Uo pasnooy suonsonb ‘uonjejuasardar ‘uonejuasardar HOOXH 81 Lowadx ‘uo
SIOIAOU SBAIOYM ‘suonsanb joensqe jensqy ‘suonsonb uorsusyardwod 9J910U09 10 J0BNSqY weidord Jo odA1 | -9sinoo Suruwerdord ndwod S01A0 i ’ d s[op
uo 19139q pauntojiad syradxyg JoeIISqE 10 93010U09 Aq pue weidord K1010nponur ue paje[dwos pey HON 8T q)
2y} Aq PaMO[[0J JBYIMO[J JOBIISqR 10 oyMm SJeNpeISIopuUn :3IIA0N
93010U09 & UdAIS sem juedionred yoeq
‘Teaseq
oy,
: M 20UALIdXD JAISU)XD pey|
[Te ‘oouards 1nduwios ur syuapnys
oyenpeis 1eok f (¥861
. pe1s 1eak 3s11y 10 siofew)
weiSoxd ay) 93o1dwos 3s0q szowrweigoxd q
‘uorurdo 11y ur ‘yey) 9pod Jo 2391d Ay 20UR[0S JAYTALI0D SO 1M PIdUBADE G S1ayg
'S9J1AOU sﬁ.B. sui] .VENS. o oI §190 _.o_sw sq]. Jsowl pue ‘sasinod Jurwwessord Juowadxy “M »
uey) 10139q pauntoprad spadxo oy | M : : ¢ 1se9] 18 pajerdwos pey :
aur] Jue[q e yyim paoejdor pue weidord -uerd papusjur oy sivunresBoid posBAPY srowwresgord Kem
) WO} INO UIYE)} SEM PO JO dUI[AUQ ot parodwios e ouo osuodsal jo AorInooy 90IAOU 6 0[oS
SeM 2su0dsar 1091100 i ‘SururexSoid [eosed ur 9sI1n0d Y
ISIIJ © JO PUS oY) J SJUOpns
o1om s1oweI301d :9dIA0N
"SISSB[O
"JUSWIR)E)S souIn uonexIj Soulr) SUOexIy JJenpeis pue ajenpeisiopun stowrergoxd
. S : U PIdUBADE WOIJ SYUIPNIS pue
Ehliclielibel weidoid Jo 9dA) yoes uo pajexiy Aoy pooueApe (]
: s1oquow A)NoeJ S :PIdUBAPY
J10J JueoryIusis Afjeonsne)s | Juo| Moy os[e Inq pamdla sowwergord ~(5oTAap Sumpe JuowiLadxg
SEeM UOIBIND UONEXI] 9T I0AR Y], JeyM AJUO JOU QUIULINOP AJostoard HAp SUPEN stowrwesgord
. . 0} Sunyoen a4 pasn juswLadxa st SUOIJeXIJ JO IJoquin 245 ue Aq pajodjep apod Jo ouaHadXd 901A0U
} SUpREn pasny : L HEX JO PqUnN 9o5a1d © 03 sAed sowwreidord Surwei3oid Jo 191sowos : 6
B Je) UONUI)R) SUOTIeXI] JUO IIM SIUIPNIS :IIIAON
"9p0oJ JO dul[A}
Jo sso[pre3ar ‘own sso] Appuedyyrugis
ur s1y) ysiidwoooe 03 9[qe o1om own asuodsoy
srowwrer3old pasueape 10w Y], *K)noey SO pue sjuopmis srounueiSord
SD 91enpeisd :paduBApY
. . - paoueApe G|
sasuodsar 3001109 Jo a3ejuodrod uasardar 0y ATy JsOWw sem 9pod 9pod jo I—
JO su1o) ur AJI[Iqe duies ay) Jo auy & weioxd yorym surueg aur] & Jo (yo1eas Areuiq "[9A9] dyenpeidiopun srounueiSord ¥ : q
pakerdsip siowwes3old paoueape 10 1J0S [[9US ‘YOIeas JsIiy Jo1uds 1o Jorun(oy oIEIDOULIIUI
QIOW PUB 9JRIPAWLIIUT Y], ydop) widnio oy AJnuopr 1B SJUOpNIS SO :d)RIPIULIRU] P sl
0} 9[qe sem Jowweidoxd SSUJOALI0))
"dw) SSI] UI sk} 1]} J1 J991100 SB PAJISSE[O
oy pajo[dwos dnoi3 paoueApe oy, sem osuodsar oy,
"Aindey §O pue s)uopmys (zooz
SD 91enpeid :paduBApY ¢
‘weidoid e Jo seare ‘wesgord yooqu
jueIodur Y UO 2)LIUIIUOD 0) PUd) [oIeds ATeUIq € WOIJ ouIed "[OAQ] 9yenpeISIopun OPIM
srowwrer3old paousnadxa SI0IN 9poo jo our| Jenonted e Jo1uds Jo Jorun(oy ¥ ‘7
1e1) Sem 31 A1 moy (9[eds | Je SjuopmS SO :d)RIPIUMLINU] 10128
‘seare weidord usomioq ‘uonounj weidoid e Jo a1om A3y} jurod 9 © UO) Muel 0} payse ‘Aq
S)MSAY yse) [eyudmIdxy PN dlqerie A Judpuddaq J[qerie A Juapuddapug $393[qng# ApmS P

G9
79
€9
29
19
09
68
8G
LS
99
qq
A
€q
49
18
0§
3%
87
Ly
9v
N7
vy
(974
A%
v
0v
6€
8¢
LE
9¢€
G¢
/43
€€
43
T¢
0¢
6¢
8¢
Le
9¢
G¢
ve
€cC
x4
N4
0¢
6T
8T
LT
91
CT

9
a1e own) uoneudw[dw pue (9pod
JO Sl 10 SIB9A UI IOYIS PAINSLau) (
doudradxoe Suruweidold eaef souoadxo voMm
SunuuresSoid agpeqd
ouip uogejuawolduwy : ur yse) 3urpod & JuIIOLId own uonejuswedur S1oA9] ared pue [enpratput : m yowdxs | 1
Y} pue [9A9] doudLIddxo ad. ut>iser swp e B uoney 1ewr Y} e 30q ‘siedk Juruwerdord s <\wM%mMﬂ.om -1sen) um Mv
AT} UM} UOT)B[OII0D OU ST AT i Mﬁ dwos .wm 1l m
‘pajerosooun are doueurorod red W
o) pue S[OA9] 20UdLIdXS [enpIAIPUT
93819100
SIOIAOU AU} [00[q pue jusLels Jo 1S9 Jo AEnd
JO 1593 9y uey) 9poo uoneorydde SULId) UI §359) podofoAdp '
1) U0 23.IOA0D IAYTIY B IAJIYOR ay) Jo Aypenb ay,
suadxo oy £q pado[oadp 1593 Ay,
S001A0U A By 159} 9oueydodoe isI1y
101585 ApueoyIusis o 1 S110dx0 oL o mun uonejuswd[dwr | wonejuowrdwy Jo oI
oY jo uonemq 909 qe[JX Ue (
*9p09 159} pue opoo uonedrjdde POUSIUL OUM SJUOPIIS "SIMAON | noom
BuiBueyo uy 10)sey a1e spadxa oy L : ur yse) SuIpoo € SuIIOLo, rondate uowddxyg | 190
ad.l ut se) surp LoD souomadxe gL ndx JusurLIedxy w..M
'SOOIAOU A} 10J Uey) suadxa oy 10§ oy rod 9p09 359} pue [emsnpur s souwrwerSod Hedxa dal L M)
Jo[Tews st ssaoo1d uonjeyuswajduur 9poo jo sour] paguey) [9poo uonesrjdde 1o5 poads [euorssojord “spradxy 1N
oroym a3 Surmp opod
Jo saul| pagueyo Jo Joquinu Y |, ssa001d uonejudwa[duur
J[oym oYy SuLnp .
*SOOTAOU AT} (DOTD) 2po9 Jo soury 9p09 §O soulf 03 $AFUEY)
uey) $s2901d JuawdoaAp USALIP Ppagueyd Jo Ioquunu Y[
-1$9) 9Y) JO SI[NI Y} 0} JOUBULIOJUOD saueo
1oy & 9AdTYOE s1adxa oY, [T 19A0 ‘s3urI0}0BJoI ‘AL 0} SOUBWLIOFUO))
snyd saSueyo qQ.L
IoUIOUE JUO LM 2AI5E 0] pua) pue “IR[IWIS 9Q P[NOM UOINJOS JO PO swiy Surog (861
sameay doop oy} I9pISu0d syradxyg N : M syuopmys drenpeid :syrdxy 4
asoym swopqoid 1oy3e301 dnoi3 03 ISE} BURIOS IoyE suadxq 6 JoUS
“Apudsisuoout swidjqoid yuosardar paxse mwB%%M MEQENMQ WMMWMMWMMMM s100[qns [eyudwtadxe ‘uorjejuasordor J10)SOWAS PIIY} oo1A0 juowrLadx gy »1
nq wojqoxd oy Jo sarnjeay ISP LT 405 SUOHEOL £q pasodoxd wojqod SurnweISold | pue puooss Jo SIUSPMS SIMAON HON'9 ISTOM
udAIS sem juedioned yoeg : :
90BJINS A1) JOPISUOD SIITAON : o $9LI0521ED JO 198 ¥)
(zooz
R
22qua
-a1reuuonsanb e paomsue syuedronted ++D)M uSIsop BTN
‘werdoad oy Jo suonejuasardar ‘oseyd Apm3s [eniul Iy} Yy ‘sdjou 0O ut paousnadxd siowwersord syedxy ¢ »
[eIUdW 1991109 SUIONNSUOD aye) pue ‘(papiroid sem 9[qeINOAXd | sasuodsal Jo SSoUIIALI0D) uorsuoyaidwo) Jeuorssajoid :paadxyg juownadxy | “osto ¢
18 SOJIAOU URY) 1939 dIe spadxy | ue) 11 uni ‘weidoxd ay) Apmys 0 pamoj[e SIJIAON [T suuan
d1om syuedionaed ‘1 oseyd Suning ‘SJUSPNIS PIOUBAPE :IIAON ‘CETH
\\a
Iprey
ng)
S)msay Yse) [epuamLdxy JLIPIA dIqerie A Judapmdaq dIqeLie A Juspuadapuy $1a[qng# ApmS IEX

G9
79
€9
29
19
09
68
8G
LS
99
qq
A
€q
49
18
0§
3%
87
Ly
9v
N7
vy
(974
A%
v
0v
6€
8¢
LE
9¢€
G¢
/43
€€
43
T¢
0¢
6¢
8¢
Le
9¢
G¢
ve
€cC
x4
N4
0¢
6T
8T
LT
91
CT

“own) uonejudwa|dwi oy pue
S[OAQ] 9oudLIddXe [ENPIAIPUIL 9SOY)
U99M)9q UOTJB[O1I0D OU ST I

‘pajerorIooun

S)MSY

yse) [eyudmIdxy

LA

dlqerie A Judpuddaq

J[qerie A Juapuddapug

$193[qng#

ApmS

A

G9
79
€9
29
19
09
68
8G
LS
99
qq
A
€q
49
18
0§
3%
87
Ly
9v
N7
vy
(974
A%
v
0v
6€
8¢
LE
9¢€
G¢
/43
€€
43
T¢
0¢
6¢
8¢
Le
9¢
G¢
ve
€cC
x4
N4
0¢
6T
8T
LT
91
CT

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

® Research methodology: The vast majority of studies are experiments. In most cases, they compare two groups
(novices vs. experts). Studies with only one group of subjects, characterized by their experience years, are also
common, e.g., (Sheppard et al., 1979). These later studies, with the exception of (Askar & Davenport, 2009), are
quasi-experiments.

e Characterization of novices and experts: All studies use novices with very little (e.g., (Wiedenbeck, 1985)) or no
experience (e.g., (McKeithen et al., 1981)). On what regards expert characterization, the situation is far from
uniform. Some studies use experts with limited experience, e.g., graduate students (J. Weiser & Shertz, 1984; Ye
& Salvendy, 1994). In other cases, experts may have quite a lot of experience, e.g., (Burkhardt et al., 2002) use
professional programmers with experience in OO design with C++.

® Response variables and measurement procedures: Programmer performance is typically measured indirectly, e.g.,
ability to identify valid programming language sentences (Wiedenbeck, 1985), ability to remember meaningful
code snippets (McKeithen et al., 1981), etc. Subjective measures, e.g., self-efficacy scores (Askar & Davenport,
2009) have been also used. Direct measurements (e.g., effort (E. Arisholm et al., 2007)) are uncommon.

o Experimental tasks: Most of the studies have many points in common with classical experiments on expert
behaviour. There are plenty of recognition, matching and recall tasks. There are relatively few studies where
subjects are called upon to generate code, e.g., (M. M. Muller & F. Padberg, 2004). Experimental objects are ad-
hoc and especially prepared for each study. With regard to complexity, the objects are generally simple. Studies
where actual coding is performed, e.g., (Miiller & Hofer, 2007) use general problem domains where specialized
(domain-specific) knowledge is not required.

Save very rare exceptions, Chase and Simon’s theory of experience (Chase & Simon, 1973) has generally been
repeatedly confirmed. Experts identify or remember more programming language sentences than novices (McKeithen
et al., 1981), consider deeper program features (J. Weiser & Shertz, 1984) or are faster than novices (Miiller & Hofer,
2007). Experts do not always outperform novices (e.g., (McKeithen et al., 1981)) but this can usually be explained by
the non-transferability of experience, i.e., in such cases, experts are working outside their area of expertise, where
their strategies are not applicable and, therefore, they perform similarly to novices.

There have been reports in the literature of cases where experience does not always lead to better performance.
(McDaniel, Schmidt, & Hunter, 1988) reported low correlations between experience and performance. (Camerer &
Johnson, 1997) conclude that subjects with experience make decisions or predictions that are no better or even worse
than those made by inexperienced subjects. There are studies with similar outcomes in the area of programming (M.
M. Muller & F. Padberg, 2004; Sheppard et al., 1979), as well as in other areas of SE, e.g., (Marakas & Elam, 1998;
Sonnentag, 1995). This apparent contradiction can be explained if a distinction is made between experience and
expertise. In order to achieve the performance of an expert, subjects need to complete a period of intensive practice,
with the deliberate intention of improving performance (i.e., achieving expertise). The mere practice of an activity
(i.e., the years of experience) may improve performance but not to the point of it being equal to that of people who
are generally recognized as experts in an area (Ericsson & Charness, 1994).

Finally, it is noteworthy that experience has mainly been studied indirectly. The typical study presents some
task(s) to expert and novices subjects, and some facet of the problem solving process (e.g., the top-down or bottom-
up programming strategy) is observed. Later, on the basis of Chase and Simon’s theory of experience (Chase &
Simon, 1973) a given strategy (e.g., top-down) is associated to expert behaviour. It is assumed that such strategy will
lead to better programs and subjects are categorized according to it. However, expert behaviour does not equate to
expert performance. Existing studies are missing direct measures of programmer performance, e.g., whether expert
programmers are more productive or generate programs of better quality than novices. In fact, one of the two existing
studies reporting negative results (M. M. Muller & F. Padberg, 2004) uses direct measures. Recent research, e.g.,
(Ericsson, 2006b) emphasizes the need of explicitly measuring expert performance, instead of relying on (apparent)
expert behaviour. On this ground, this paper addresses the following research question:

RQ: Is the performance (measured directly) of expert programmers (i.e., with longer periods of service)
superior than that of novice programmers?

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

3 Family of experiments

3.1 Conducted quasi-Experiments

We conducted 10 quasi-experiments, six of which were run in industry and four in academia. All the quasi-
experiments were conducted as part of the Empirical Sofiware Engineering Industry Lab (ESEIL) project, led by N.
Juristo and funded by TEKES'. The research has been conducted according to the regulations laid out by the
Universidad Politécnica de Madrid and University of Oulu’s Ethical Boards. Both the funding agency and the
participating researchers state that they have no conflicts of interest with respect to the research results. In all cases,
the experimental procedure was as follows:

e Before conducting the quasi-experiments, the experimental tasks (shown in Appendix B) were selected and the
code templates were prepared. H. Erdogmus, B. Turhan, D. Fucci, A. Tosum and T. Raty performed this task.

e Again before the quasi-experiments were performed, the forms described in Appendices C and D were used to
acquire data about the experimental subjects. A. Santos processed these demographic data.

e Each quasi-experiment used a particular programming language, testing framework and IDE depending on the
preferences of the host organization. The most commonly used technology was Java + jUnit + Eclipse.

e The quasi-experiment had a total duration of eight hours:

o The first four hours were spent on training the subjects to use the selected testing frameworks and
practical exercises. B. Turhan delivered the training for quasi-experiments 1-5 (with the help of T. Raty in
one case?). O. Dieste delivered the training for experiments 6-10.

o The experimental task (MR, BSK, with or without slicing) was completed after training. It had a duration
of two hours without breaks. The task assignment to experimental subjects differed slightly in each quasi-
experiment for the purpose of alignment with the needs of the research on programming strategies and
TDD of which this study is part. Tasks were assigned rigorously without introducing validity threats.

o D. Fucci, A. Tosum and S. Vegas (depending on the case) supervised the experimental task. At the end of
the experimental task, subjects handed in their code and the quasi-experiment was concluded with a short
debriefing.

Table 2 shows the particular conditions under which each quasi-experiment was conducted. As such contextual
variables can have a bearing on code quality and programmer productivity (e.g., C++ and Boost Test are more
complicated to use than Java and jUnit), they have to be specifically considered and, where appropriate, added as
blocking variables to the analysis. One exception to this rule is the IDE, as it is the same in almost all cases (Eclipse)
and has no predictive power. Although the same might be said of programming language (C++ and Java) and testing
framework (jUnit, Google Test and Boost Test), each group has a sizeable number of subjects in these two cases (e.g.,
29 subjects used C++). It is therefore preferable not to jump to conclusions and have the actual analysis procedure
determine (e.g., by collinearity) whether or not these contextual variables should be omitted.

Table 2 Contextual variables characterizing each of the conducted quasi-experiments

TRAINER SITE PROGRAMMING TESTING IDE
LANGUAGE FRAMEWORK
Experiment 1 B. Turhan Industry Java jUnit Eclipse
code 2 B. Turhan Industry Java jUnit Eclipse
3 B. Turhan Industry Java jUnit Eclipse
4 B. Turhan Industry C++ Google Test Eclipse
5 B. Turhan Academia Java jUnit Eclipse
6 0. Dieste Industry Java jUnit Eclipse
7 O. Dieste Academia Java jUnit Eclipse
8 0. Dieste Academia Java jUnit Eclipse
9 0. Dieste Academia Java jUnit Eclipse
10 O. Dieste Industry C++ Boost test Eclipse (17 cases) Vim (2 cases)

! TEKES: Finnish Funding Agency for Technology and Innovation

2 Not specified so as not to disclose T. Raty’s organization.

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

3.2 Dependent variables

The effect construct is programmer performance. As the research question states, we passed over the response
variables typically used to study the effect of programmer experience, e.g., ability to identify valid sentences in a
programming language (Wiedenbeck, 1985), and we used operationalizations focused on code properties that could
be directly measured.

Code can be examined from different viewpoints. In this research, we used the External quality of the code and
the Productivity of programmers as response variables. External quality is equivalent to the functional concept of
quality defined in ISO/IEC 25010 as the extent to which a software product satisfies certain needs (ISO, 2011). In this
respect, quality is related to what functionality code users get rather than the internal structure of the code, which is
why we use the adjective external. Productivity is generally defined as the amount of work done. Section 3.9 details
the metrics and measurement procedures for both variables, which are basically percentages representing the ratio of
External Quality or Productivity to their respective maximum values.

The use of the above variables has two practical advantages. On one hand, this research into the effect of
programmer experience is part of a wider research project into programming strategies and test-driven development
(TDD). The External Quality and Productivity variables are often used in TDD studies, e.g., (Erdogmus, Morisio, &
Torchiano, 2005) (Munir, Moayyed, & Petersen, 2014). Therefore, their use will keep both research projects aligned
and create synergies. On the other hand, External quality and Productivity can be defined separately from the task,
programming language, etc. This provides for the comparison and joint analysis of data from a range of experiments.
This is a very important point, as sample sizes of over a hundred subjects are required to achieve adequate statistics
power (see Section 5.1.2). The sample size of a single experiment is not usually this big, and several experimental
replications have to be conducted and jointly analysed.

3.3 Subject selection

The experimental subjects were convenience sampled (i.e. selected by availability). They are members of two
separate groups:

e Programmers with different levels of experience from four European companies located in Finland and
Estonia.

o Senior undergraduate and postgraduate students from three universities located in Spain and Ecuador. Most
of the students do not have professional experience, although some have already worked or are working in
industry.

3.4 Experimental task

The quasi-experiment has only one experimental task, which is to apply an Incremental test-last development (ITLD)
strategy (Madeyski, 2005). This strategy involves writing production and testing code in parallel, without prioritizing
testing code as in TDD. The ITLD strategy is in widespread use in industry, where there is a recognized need for
automated testing to increase production code quality (Williams, Kudrjavets, & Nagappan, 2009). ITLD is not
unusual, albeit less common, in academia. No further conditions were imposed on ITLD, i.e., each programmer was
allowed to select whichever slice granularity and tests he or she wanted to use. In other words, the programmers
completed the task more or less as per usual practice. All programmers were informed verbally, at the beginning of
the experimental session, that the goal was to complete the experimental problem in the allocated time frame.

3.5 Experimental Problems

The subjects applied ITLD on two experimental problems, MarsRover API (MR) and Bowling Scorekeeper (BSK).
BSK and MR are generic programming assignments, and thus they do not specifically belong to the domain of ex-
perience of any of the experimental subjects. They enable a clear separation between potential domain knowledge
effects (i.e., the performance improvements achieved because the programming assignment is familiar) and the
effects due only to the length of programming experience, which are the ones relevant for this research.

Appendix B gives a full description of the programming assignments that the subjects were set. There are two
versions: with and without slices. Slices conform the original definition by (M. Weiser, 1981), although we are using
them from a different perspective (Lee, Chung, Yoon, & Kwon, 2001). MR and BSK problems are not at all
challenging for professional programmers and should be doable for undergraduate and postgraduate students.

3.5.1 MarsRover API

10

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

MR is a programming exercise that requires the development of a public interface for controlling the movement of a
fictitious vehicle on a grid with obstacles. MR is a popular exercise used by the agile community to teach and practice
unit testing.

MR is an algorithm-oriented task and does not involve the creation of a user interface. The implementer needs to
handle several boundary cases in order to produce the expected results. The implementation of MR leverages a NxN
matrix data structure representing an imaginary planet on which the rover moves. Each matrix cell may store an
obstacle on the planet’s surface. Obstacles are without behaviour and can be modelled using simple data types (e.g., a
Boolean for representing presence/absence). Subjects have to implement six main operations necessary to move the
rover on the planet’s surface. The task can easily be solved using just one class. The possible operations are:

Matrix initialization and assignment of obstacles to cells
Command parsing

Forward and backward moves

Left and right turns.

The forward and backward moves are the most complex operations. Command parsing and left/right turns are
straightforward operations. The assignment of obstacles to cells upon initialization requires some parsing and type
casting.

Subjects were given the MR specification document and a project template in order to get them started and provide
a common package structure that would make data collection easier to automate.

3.5.2 Bowling Scorekeeper

BSK is a modified version of Robert Martin’s Bowling Scorekeeper (Bob, 2005). This task is also popular in the agile
community. The goal of the task is to calculate the score of a single bowling game. The task is algorithm-oriented and
it does not involve the creation of a user interface. The task does not require prior knowledge of bowling scoring
rules: this knowledge is embedded in the specification. BSK also has six main operations:

Add a frame or bonus throws

Detect when a frame is a spare or strike
Calculate a frame score

Calculate the game score.

The most complex operation is the calculation of the frame score. It depends on the type of the frame (regular,
spare or strike), the position of the frame in the game, and whether or not the next frame is a strike.

We gave subjects the BSK specification document and a code template.

3.6 Treatment assignment to subjects

We have used a quasi-experimental design to study the effect of experience. Quasi-experiments are used when the
subjects cannot be randomly assigned to an experimental condition, or, alternatively, a treatment cannot be assigned
to a group. This applies in our case, as the experimental subjects’ characteristics are intrinsic and cannot be
randomized or blocked. Consequently, all the subjects have performed the same task (ITLD) to the same
experimental object (MR or BSK, either sliced ir not). Note that each subject participated only once. The quasi-
experimental design of this study means that the relationship between the independent and dependent variables
cannot be said to be causal.

3.7 Instrumentation

The subjects implemented the experimental tasks in Java or C++. The language was selected depending on
preferences at the site where each quasi-experiment was conducted. They used the jUnit, Google Test and Boost Test
testing frameworks. In all cases, we gave subjects stubs so that they did not have to write the testing framework
initialization code (not necessarily evident in the case of Boost Test) and could focus exclusively on writing the tests
that they considered necessary. Most subjects used the Eclipse integrated development environment (IDE), although
some subjects preferred to use text-mode editors like Vim.

3.8 Measurement Procedure

3.8.1 Independent variables

11

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

We gathered the values of the independent variables using a questionnaire implemented in Google Forms.
Appendices C and D show the questionnaires for professionals and students, respectively.

3.8.2 Dependent variables

We used acceptance tests as the main instrument for extracting the Productivity (PROD) and External Quality
(QLTY) response variable data. We wrote a set of acceptance tests for all tasks. MR can be decomposed into 11
subtasks (or slices) that represent all the functionality required to complete this tasks. A total of 13 subtasks can be
defined for BSK. Appendix B lists the MR and BSK subtasks. One of the researchers (D. Fucci) wrote tests for MR,
whereas the BSK tests were adapted from a previous experiment (Erdogmus et al., 2005). MR’s acceptance test suite
has 11 test classes, 52 test methods and 89 assertions. BSK has 13 test classes, 51 test methods and 56 assertions.
Each test class implements the test of a particular subtask.

Productivity can be defined as (B. Kitchenham & E. Mendes, 2004):

.. Process output
Productivity = —rocess owpt

1

Process output is some measure of size, such as the number of lines of code (LOC) produced by a developer,
number/percentage of user stories implemented, or the number/percentage of passing test cases. LOC has known
weaknesses as a metric (Armour, 2004). Conformance-based metrics are widely used (Darcy & Ma, 2005). Therefore,
we opted to use the percentage of passing test assertions over all assertions as the basis for output calculation.

Process inputs

The most common input is some measure of effort (Fenton & Bieman, 2014), such as man-months or monetary
cost. In our case, subjects have a set time in which to complete the tasks and also tend to use up all the allotted time.
Therefore, a time-based metric is of no use. We also ruled out monetary cost, due to the quasi-experimental character
of our research. It implies, in essence, that the process input is constant across subjects and experimental runs. Being
constant, it can be discarded for productivity calculation.

Thus, PROD represents the amount of functionality delivered by programmers (i.e., the amount of work done),
and it is defined as shown in Equation 2 below:

#Assert(Pass)

PROD =
#Assert(All)

x 100 (2)

The concept of quality that we are using is the extent to which a software product satisfies certain needs (ISO,
2011). Defined as such, quality can be interpreted as the amount of functionality delivered by programmers, i.e.,
productivity. However, this equality is only valid when coding is complete, that is, when programmers are able to
finish completely a task before delivery. When it does not happen, the amount of functionality underestimates quality.
For instance, let’s assume that a programmer completes only a fraction (e.g., 80%) of a given task, with no errors. His
or her productivity is clearly 80% (the amount of delivered functionality), but the quality of the code cannot be 80%
because it is completely correct; quality should be 100%.

In this research, most experimental subjects have been unable to complete the programming tasks. Therefore, we
need to find out the degree of termination of each task to fine-tune quality accordingly. We have accomplished this
goal examining MR and BSK subtasks. We have considered that an experimental subject has worked on a given
subtask when at least one assert statement in the acceptance test suite associated with that subtask passes. This
criterion is used to objectively separate subtasks into whose completion a subject put a reasonable amount of effort
from other subtasks into which a subject put little or no effort.

In order to formalize this criterion, we have defined whether a subtask i has been “tackled” (TST;) as indicated in
Equation 3:

1 #ASSERT;(Pass) > 0

TST; =
t { 0 otherwise

3)

The number of tackled subtasks (TST) is calculated using Equation 4, where 7 is the total number of subtasks
making up the measured task.

TST = Y7, TST; @)
We use TST to calculate QLTY in Equation 5:
LTY;
QLTY = Trsp—1 & (5)

12

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

where QLTY; is the quality of the i-th tackled subtask, and is defined as:

#Assert;(Pass)

QLTYi = #Assert;(All)

x 100 (6)

#Asserti(Pass) represents the number of passing assertions in the acceptance test suite associated with the i-th
subtask. In other words, QLTY represents how correct (in percentage) the code corresponding to the tasks
tackled by subjects is.

The dependent variables PROD and QLTY are related in such a way that QLTY >= PROD. This restriction
implies that QLTY can take any value when PROD is low but, as PROD increases, QLTY increases accordingly.
When PROD nears 100%, QLTY also approaches 100%. The strong relationship between PROD and QLTY makes
that both constructs cannot be differentiated when subjects are highly productive, i.e., in such a case we observe
Productivity or External Quality (likely the later), but not both. Fortunately, in the set of quasi-experiments that we
are using for this research, the time is constrained and only a fraction of subjects achieves high PROD values.
Therefore, we are rather confident that the constructs Productivity and External Quality have been reasonably
operationalized.

3.8.3 Data collection

The measurement procedure involved executing the test suites on the code written by subjects. Subjects were told not
to modify the API for the MR and BSK problems which was well defined in the code templates that they were given.
Even so, they did. This caused compilation errors in the test suite. These errors were corrected by adapting the
production code to the test code and vice versa depending on each case. We tried to modify the code written by
subjects as little as possible so as not to introduce validity threats. However, the alternative in many cases was to
assign QLTY =PROD = 0 values for the subjects that had altered the API, which was clearly going too far.

Measurement was based on a set of test cases, but some type of adaptation of the subjects’ source code (e.g.:
aligning return data types, fixing problems with leading/training spaces, etc.) should be made in almost all cases. The
measurer can have an influence here, e.g., one measurer might make more changes to the production code than
another. This possible threat to validity is addressed in Section 7. D. Fucci measured quasi-experiments 1-3 (a total of
24 subjects), O. Dieste measured quasi-experiments 8-9 (a total of 22 subjects), and F. Uyaguari measured the other
five quasi-experiments (a total of 80 subjects). We collected data from a total of 126 subjects.

3.9 Experimental repository

Experimental data is confidential nowadays. A sanitized version is available at
http://www.grise.upm.es/sites/extras/11. This website also stores the test cases used for measurement.

4 Methodology

The study of the effects of experience on programmers’ performance was conducted by means of a series of quasi-
experiments. The programmers completed a programming assignment, and their experience and performance were
then compared. The quasi-experiment design is detailed in the following.

4.1 Hypothesis

The main hypothesis of this paper, stated as null/alternative hypothesis, is as follows:

Hpy: programmer experience does not influence their performance

Hi: programmer experience does influence their performance.

It is a generally accepted fact in SE that experience improves programmer performance. Therefore, one might be
tempted to test the hypotheses using one-tailed (i.e., programmer experience improves their performance) rather than
two-tailed tests. However, the reviewed literature shows that there are contradictory opinions with respect to
experienced programmers performing better. As this is an exploratory study, we decided provide for possible effects
in both directions, i.e., experience having both positive and negative effects, to be on the safe side.

In this research, performance has been operationalized as the quality (QLTY) and productivity (PROD) response
variables. QLTY represents the degree of correctness in the experimental task that the programmers were able to

13

O Joy U WM

WWWWWWNRNRNRNRONNNNNDNNEF B R R P
OB WNRP OOV JAU D WNR OWW-JoUld WN - O W

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

achieve. PROD represents the amount of functionality delivered. If experience influence performance positively, then
we should find a direct relationship between any experience-related variable and quality/productivity. It is unlikely
that experience influence positively quality or productivity alone. Common sense suggests that an expert programmer
does not only do more work than novices in the same time, but the work outcome is also better, i.e., of higher quality.
Nevertheless, we will test Hy independently for quality and productivity to evaluate all possible alternatives.

4.2 Independent variables

4.2.1. Experience-related independent variables

The cause construct refers to Programmer experience. Experience is not a directly observable construct (Siegmund et
al., 2014) that can be operationalized using multiple independent variables (e.g., programming experience, unit
testing experience), where each independent variable can be measured in different ways (e.g., years, Likert scales).

In this research, we decided to use as many independent variables as possible to prevent mistaken conclusions
being reached due to the operationalization. For example, Unit testing experience could be considered a poor
operationalization of Programmer experience, as a good tester is not necessarily a good programmer. However, it is
reasonable to assume that a programmer with some Unit testing experience might produce better quality code.
Therefore, it is not wrong to use the Unit testing experience as an independent variable. Table 3 details the studied
independent variables.

Table 3 Independent variables used

Categorical (dummies) Ordinal Scalar

« Holdsa CS degree e Experience in the unit testing e Experience in the programming

. . framework used during the language used in the experiment
* Currently uses a unit testing experiment acquired in academia
framework e Experience in the programming e Experience in the programming
* Ha§ spgcmhzed traming language used in the language used in the experiment
unit tes““g) o experiment acquired in industry
* Has specialized training in Overall programming e Overall programming experience
TDD experience acquired in academia
¢ Current uses the IDE used it testing experience e Overall programming experience
in the experiment e TDD experience in TDD (if acquired in industry
* Currently uses TDD currently uses TDD = YES)

The categorical variables have two possible values (No/Yes) with a numerical equivalence for ease of
interpretation if their effect is as expected (e.g., 1 = NO CS degree, 2 = YES CS degree, assuming that CS degree
holdership improves both programmer quality and productivity). The ordinal variables are measured by means of
four-point Likert scales, coded as follows:

1 = No experience (< 2 years)
2 = Novice (2-5 years)
3 = Intermediate (5-10 years)
4 = Expert (>10 years)

The Likert scale is based on year ranges that are equivalent to the time spans commonly specified in the literature
that it takes to acquire the respective expertise. (Campbell & Bello, 1996) point out that programmers need (at least)
two years to become Smalltalk experts. (Sim, Ratanotayanon, Aiyelokun, & Mortris, 2006) consider that 5 experience
years are a reasonable period (not necessarily sufficient) for an engineer to achieve expertise. Additionally, these
ranges counteract the optimism with which the subjects interpret the text labels (i.e., novice, expert), which biases
measurements (Aranda, Dieste, & Juristo, 2014). Positive biases have been reported in several SE activities, e.g.,
(Jergensen, Faugli, & Gruschke, 2007).

Programming experience is probably the most interesting aspect in this research. The ordinal variables Experience
in the programming language used in the experiment and Overall programming experience are very useful for
studying the effect of experience on programming, as they are handy means for subjects to rate and report their
experience. On the other hand, however, their accuracy is limited on two grounds:

e The results of the multiple linear regression analyses (i.e., the analysis method used in this research, see Section
4.3) may be biased by the use of ordinal values (Winship & Mare, 1984).

o The experimental subjects (see Section 3.4) are both professionals working in industry and students taking
different programmes in academia. The extent and rate of exposure to the programming activity in both

14

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

groups should be considerably different and it is seldom clear that they can be measured using the same
variables.

In order to set off the ordinal variables, we have also captured separate scalar variables for industry and academia
measured in years and referred to both experience in the programming language used in the experiment and overall
experience.

4.2.2. Other independent variables

This paper is, in essence, a secondary analysis that relies on data collected in diverse contexts using different
experimental designs. Such diversity gives rise to the appearance of several variables, such as TRAINER, SLICING
or TASK ITLD, not directly related to the experience construct. For the reader convenience, the independent
variables used are listed in Appendix A.

4.3 Dataset

Table 4 summarizes the key demographic sample data. As we can see, both professional programmers and students
state that they have from two to 10 years of overall programming experience and slightly less (from zero to five
years) experience in the specific programming language used in each experiment. Appendix E shows the breakdown
of experience measured in years. Generally, the experience measured in years is quite well aligned with the Likert-
scale data. The experience on the programming language used in each quasi-experiment is slightly greater among
students than in industry (2.1 vs. 1.8 years). This is probably a reflection of the widespread use of Java in academia as
opposed to the wider range of programming languages that are used at companies. Overall programming experience
is, predictably, greater in industry (4 vs. 5.1 years).

As regards experience broken down by subject types, we found that students have slightly more academic
experience than practitioners regarding the programming language used in each quasi-experiment (2.2 vs. 2.0 years
on average, respectively). However, practitioners, predictably, have more experience than students in industry (0.7 vs.
2.7 years). The pattern is similar for overall programming experience (5.9 vs. 2.7 and 2.4 vs. 7.1 years). Experience
measured in years clearly appears to better account for population characteristics than the ordinal variables, and will
be given preference.

The biggest difference between both groups (professionals and students) is with respect to years of unit testing
experience, IDE use and academic training received. Most students are pursuing a degree in computer science,
whereas professionals have different educational backgrounds. On the other hand, professional programmers have
more experience in unit testing, whereas students are more acquainted with IDE use.

The number of subjects in each independent variable category is reasonably well balanced, on which ground we
expect the research results will not be biased by group size, except perhaps with regard to educational background
and TDD use. This could be considered as a possible threat to validity as described in Section 7. Additionally, the
experience ranges at our disposal match the specifications in the related literature, where theoretically expertise is
acquired after from five to 10 years of deliberate practice (see Section 2). The experimental subjects should therefore
be suitable for identifying the effects of experience on code quality and programmer productivity.

Table 4 Characterization of subjects. Totals do not match due to missing responses.

ENVIRONMENT
CHARACTERISTICS LEVELS
ACADEMIA INDUSTRY TOTAL
CS degree holdership No computer science 1 29 30
Computer science 54 36 90
Total 55 65 120
Overall programming No experience (< 2 years) 7 5 12
experience Novice (2-5 years) 25 20 45
Intermediate (5-10 years) 23 29 52
Expert (>10 years) 1 15 16
Total 56 69 125
Experience in programming No experience (< 2 years) 16 24 40
language used in the Novice (2-5 years) 28 26 54
experiment Intermediate (5-10 years) 12 12 24
Expert (>10 years) 0 8 8
Total 56 70 126
Experience in unit testing No experience (< 2 years) 50 31 81
Novice (2-5 years) 6 25 31
Intermediate (5-10 years) 0 11 11
Expert (>10 years) 0 3 3

15

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

ENVIRONMENT
CHARACTERISTICS LEVELS
ACADEMIA INDUSTRY TOTAL
Total 56 70 126
Current usage of the IDE used No 10 36 46
in the experiment Yes 45 34 79
Total 55 70 125
Current usage of TDD No 50 51 101
Yes 6 19 25
Total 56 70 126

4.4 Analysis strategy

Each quasi-experiment separately is insufficient for detecting effects in either of the response variables. For example,
a correlation analysis requires 67 subjects to identify medium effects (» = 0.3) with a power of 80%. The
simultaneous analysis of several variables would be less statistically powerful. Consequently, the data collected from
the quasi-experiments must be analysed jointly.

We have to rule out meta-analysis on two grounds: (1) there are not many well-developed meta-analysis models
for multiple independent variables, and (2) we have subject-level data, meaning that the most common analysis
methods (e.g., ANOVA, multiple regression) are applicable (provided the right blocking variables are introduced
(Hedges & Olkin, 1985). The analysis of subject data just might, although the literature on this point is unclear,
output more solid findings (e.g., with a higher statistical power) than experiment-level analyses (Riley, Lambert, &
Abo-Zaid, 2010).

The independent variables that we have used in this research are ordinal (dummy-coded binary) or scalar. Apart
from these independent variables, the particular characteristics of each quasi-experiment have generated categorical
contextual variables (e.g., testing framework, programming language, etc., see Appendix A) which have to be
accounted for in the analysis as blocking variables. The mix of variables is problematic, as there is no method that can
analyse all of these variables together. Possible scenarios follow:

1. The usual experiment analysis methods, such as ANOVA or mixed models, cannot use scalar independent
variables.

2. If we were to omit the scalar variables and use only ordinal independent variables, we could use ANOVA and
mixed models but the different ordinal variable values would be considered as different categories. This means
that we would lose all the information associated with the order relationship between the ordinal variables. We
do not think that this is a good strategy as: (1) it is equivalent to a dichotomization that may lead to incorrect
results (MacCallum, Zhang, Preacher, & Rucker, 2002), and (2) the very phenomenon under study (the effect of
Programmer experience) requires the magnitudes to be specifically considered, e.g., three years of experience <
four years of experience, irrespective of the fact that three and four years of experience can be considered as
intermediate experience.

3. The linear regression model can deal with categorical variables. When categorical variables have just two
values (/levels), they can be used directly (provided that they are recoded as dummy variables). Categorical
variables with more than 2 levels require a more complicated apparatus (Weisberg, 2005). Ordinal and scalar
variables can be used without restrictions.

We believe that the best analysis option is to use the multiple linear regression model (MLR), because, as
discussed in Section 3.1, there are only two categorical variables with more than two values (7esting framework used
in the quasi-experiment and Experiment code) in our dataset. In the first case, we would not be running too much of a
risk if we recoded the variable, as specified in Section 4.4. This way we would be able to take advantage of the fact
that MLR is better able to deal with ordinal and scalar variables. The second case is not as straightforward. There is a
definite possibility of subject performance being better at one company or university than another. Therefore, the
analysis should take into account Experiment code. However, as we will see later, Experiment code is highly collinear
(i.e., the values of Experiment code are confounded with other variables). This rules out its use in MLR. A possible
trade-off is to ignore the Experiment code during the first stage of the analysis using MLR, and then study whether
the model residuals are systematically related to Experiment code. This is the approach that we take.

Four basic conditions have to hold for MLR to be reliable. They are: collinearity, sample size, normality and
homoscedasticity (Field, Miles, & Field, 2012).

1. Collinearity. For the model to be reliable, we have to assure that the model predictor variables are not collinear.
Collinearity occurs in a regression model when one or more of the predictor variables (dummies, ordinal or

16

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

scalar) are linearly correlated with other model variables. We used the variance inflation factor (VIF), tolerance
(T) and condition index (CT) to test for the collinearity between variables.

2. Sample size. The study will be more statistically powerful the larger the sample size is, that is, the statistical
power of a study with a small sample size will be low. Consequently, the estimates will be less accurate, and we
will be less likely to detect significant effects. This highlights the importance of a large enough sample size.

3. Normality. The distribution of residuals must be normal with zero mean and random but constant variance. We
used the Lilliefors-corrected Kolmogorov-Smirnov test, the Shapiro-Wilks test, and Q-Q plots to test for the
normal distribution of residuals.

4. Homoscedasticity. We tested for homogeneity of variance using scatter plots of model residuals against
predicted values.

In addition to the MLR, we will use decision trees to explore nonlinear effects (Brandmaier, von Oertzen,
McArdle, & Lindenberger, 2013). For instance, it is possible that the relationship between experience and
performance has a bell-like shape, i.e., growing up to certain point (e.g., 30s-40s-50s), and decreasing both to left and
right. A linear regression model would report a null effect in this case. The decision tree could split the dataset in
three groups: left, middle and right side, along with their respective averages.

Several algorithms for building decision stress could be used: CHAID, exhaustive CHAID, CART and QUEST.
Each one has strengths and weaknesses. We will use CART (Classification and Regression Trees), because they have
intimate connections with MLR analysis (they both use mean squared errors for scale dependent variables).
Therefore, the outcomes of the CART tress and the MLR support each other. Furthermore, CART does not impose
restrictions on independent and dependent variables, and it is not affected by the variable type (categorical, ordinal o
scale), outliers, heteroskedastic, collinearity or distributional error structures (Nisbet, Elder, & Miner, 2009). CART
can be used with smaller datasets than e.g., CHAID as well (Chulis, 2012).

4.5 Data transformations

As illustrated in Section 4.2, Table 3, the categorical variable Testing framework has three levels: gTest, jUnit and
Boost Test. In order to use MLR, we had to recode one of the variable levels to output a dummy variable.
Specifically, we have recoded the gTest levels and jUnit levels as a single xUnit value. We believe that this is feasible
as the syntax of gTest and jUnit is very similar and the gTest code templates given to students mean that it is used in
more or less the same way as jUnit in practice. We did not equate Boost Test to jUnit and gTest, because Boost Test’s
syntax is much more complex and it has a number of concepts that are quite far removed from jUnit and gTest. It
could therefore be considered more complex than jUnit and gTest, for which reason we decided to consider it
separately in the analysis.

After this procedure, the Testing framework was transformed to a dummy value with the following levels: xUnit
and Boost Test.

5 Linear Model Analysis

5.1 Data exploration

This section reports some descriptive statistics about the dataset that we will use to answer the research questions.
First, we show the overall distribution of the QLTY and PROD variables, separated by programming assignment
(MR, BSK). Later, we give an account of the average quality and productivity scores obtained by the subjects,
depending on their experience level and site (industry or academy).

5.1.1 Overall distribution

Table 5 contains histograms describing the distribution of the quality and productivity scores. We have provided
separated histograms for MR and BSK because, although both experimental objects have comparable complexity,
other aspects (e.g., domain knowledge, ability with algorithmic programming, etc.) may influence programmers’
performance. The plots suggest that MR and BSK are not exactly alike. Subjects fail quite more often (see the tall
column in the 0-10 class) when they work on MR. The lesser complexity of BSK can also be seen in the skewness (to
the right) of the distribution: more subjects achieve high quality/productivity when solving BSK. Leaving this apart,
the shapes of the histograms do not reveal dramatically different patterns.

Table 5 Data distribution (per programming assignment)

17

O Joy U WM

DO UGG OTOTOTE D DB BB D DD DNWWWWWWWWWWNNNRNNNNNNN R, R RRRFRR PR,
R WNRFROWOVWO-JONTRWNROW®®JIAOAURWNROWGWOW-JANOREWNRFROWOW®OW-JANTREWNRLOW®O-TI0 N WNR O W

MR

BSK

Frequency

QLTY

60 80 100
QLTY_ITLD

Mean = 48.98
Std. Dev. = 43.716
N=82

Frequency

Bl

Mean = 78.02
Std. Dev. = 31.478
N=42

T T
20 40

60 5
QLTY_ITLD

Frequency

PROD

0 80 100
PROD_ITLD

Mean = 27.99
Std. Dev, = 33,594
N-82

Frequency

I

Mean = 60.89
Std. Dev. = 37,046
N=42

T
20 40

0 B
PROD_ITLD

5.1.2 Quality

Table 6 and Table 7 report the number of subjects and the corresponding quality averages for different experience
levels. The grand means (both in Table 6 and Table 7) are similar, although the scores are slightly higher (3%
difference) for industry than academia. The most striking difference is the relationship between experience levels and
scores. In academia, students improve in quality as their experience increase. In industry, the scores are essentially
constant (with some exceptions, as the zigzag pattern shown in Table 7).

Table 6 Mean quality of subjects depending on programming language experience

ACADEMY INDUSTRY
QLTY #SUBJECTS | MEAN | #SUBJECTS | MEAN
No experience (< 2 years) 14| 40.33% 24| 68.89%
Novice (2-5 years) 28156.91% 26| 45.65%
Intermediate (5-10 years) 12 77.04% 121 65.55%
Expert (>10 years) 8173.01%
Total subjects 54157.08% 701 60.15%

Table 7 Mean quality of subjects depending on over:

all programming experience

ACADEMIA INDUSTRY
QLTY #SUBJECTS | MEAN | #SUBJECTS | MEAN
No experience (< 2 years) 636.08% 5158.97%
Novice (2-5 years) 25160.09% 20| 61.24%
Intermediate (5-10 years) 22161.99% 29163.36%
Expert (>10 years) 1 .00% 15153.57%
Total subjects 54157.08% 69 | 60.30%

The patters are more evident when we run Pearson correlations, as we show in Table 8. Experiences in academy
have low/medium effects (Cohen, 1988), statistically significant or close to significance. In turn, experiences in

industry are low in both cases and non-significant.

Table 8 Pearson correlations (for QLTY)

RESPONSE VARIABLE

SITE

INDEPENDENT VARIABLE

CORRELATION

r | p-value | N

18

O Joy U WM

DO UGG OTOTOTE D DB BB D DD DNWWWWWWWWWWNNNRNNNNNNN R, R RRRFRR PR,
R WNRFROWOVWO-JONTRWNROW®®JIAOAURWNROWGWOW-JANOREWNRFROWOW®OW-JANTREWNRLOW®O-TI0 N WNR O W

Academia Experience Programmlng La'nguage .155* .086 124

QLTY Overall Programming Experience .240 .007 124
Indust Experience Programming Language | .131 .146 124

Y [Overall Programming Experience .108 235 122

5.1.3 Productivity

Table 9 and Table 10 show the productivity scores using the same conventions than previous section. There are
several differences as compared to quality. First regards the grand mean for the Academia and Industry categories:
students achieve higher productivity than practitioners. Second, students increase productivity with experience,
whereas practitioners display a decreasing trend.

Table 9 Mean productivity of subjects depending on programming language experience

ACADEMY INDUSTRY
PROD #SUBJECTS | MEAN | #SUBJECTS | MEAN
No experience (<2 years) 14| 37.74% 241 40.08%
Novice (2-5 years) 281 40.89% 26| 26.64%
Intermediate (5-10 years) 121 66.74% 121 39.34%
Expert (>10 years) 8131.46%
Total subjects 54| 45.82% 70 33.97%

Table 10 Mean productivity of subjects depending on overall programming experience

ACADEMIA INDUSTRY
PROD #SUBJECTS | MEAN | #SUBJECTS | MEAN
No experience (< 2 years) 625.98% 5(47.16%
Novice (2-5 years) 25146.06% 20| 36.44%
Intermediate (5-10 years) 22153.04% 29136.14%
Expert (>10 years) 1| 0.00% 15(24.26%
Total subjects 54145.82% 69 | 34.44%

Pearson correlations, shown in Table 11 confirm the visual exploration of Table 9 and Table 10. The overall
programming experience in academia has a very strong correlation with productivity. Next is the experience with the
programming language used in the experimental session (r = 0.064), although non-significant. Industry-related
experience exhibit very low correlation coefficients, negative (confirming the decreasing trend), and non-significant.

Table 11 Pearson correlations (for PROD)

RESPONSE VARIABLE | SITE INDEPENDENT VARIABLE AL (A
r p-value N
Academia Experience Programmlng La'nguage .06:1 481 124
Overall Programming Experience 378 .000 124
PROD Experience Programming Language 010 913 124
Industry P gr g Languag . .

Overall Programming Experience -.096 292 122

The descriptive statistics suggest that industry experience does not seem to be related to superior performance.
Academic experience could. However, the previous tables and correlation coefficients summarize the dataset in a
very coarse-grained manner. There are many other independent variables that may have an influence on the quality
and productivity scores. A more in-depth analysis will be conducted in the following sections.

5.2 Choosing the best regression model

The aim of this section is to determine which regression model best fits the data. The original model contained all the
demographic variables and contextual variables (see Appendix F). We then checked that the independent variables
were not collinear. If they were, we eliminated any variables that were strongly correlated to the others, thereby
simplifying the regression model.

5.2.1 Checking for collinearity

One way of determining whether the independent variables are collinear is to use the variance inflation factor with the
condition index.

19

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

e The variance inflation factor (VIF): a measure of the impact of collinearity between the regression model
variables. High VIF values are a sign that a variable can be largely explained by the other variables, that is, that
the model variables are collinear. A VIF-related parameter is tolerance (T), which is defined as T = 1/VIF. A
guideline often used by researchers is to use a high VIF, that is, VIF > 10, which is output when R?> 0.9 and T
< 0.1. A second, more rigorous, option is to lower the bounds to VIF > 5 with R > 0.8 and T < 0.2 (Heiberger
& Holland, 2013) as evidence of collinearity.

e Condition index (IC): a measure of ill-conditioning in a matrix. (Belsley, 1991) suggest three levels of
collinearity depending on the CI: slight (CI < 10), moderate (10 < CI < 30) and severe (CI > 30). When a model
has a severe CI, the variance of one or more of its variables is substantially collinear with the other variables. A
high proportion of variance explained (greater than 0.5) is usually considered to be a sign that the respective
variable is involved in the collinear relationship.

As shown in Appendix F we have 15 independent variables that might be included in the regression model. The
collinearity statistics shown in Table 12 suggest that none of the variables has a VIF greater than 10 (a T less than
0.1). Looking at the more rigorous option (VIF > 5 or T < 0.2), we find that the pattern for the Testing framework
variable (UNIT _TESTING FRAMEWORK ADAPTED) could pose problems of collinearity, as its values are close
to the bounds established for the VIF (VIF=4.943) and tolerance is (T=0.202). On the other hand, the collinearity
statistics for the other variables are within the expected bounds (FIV < 5 and T > 0.2), which suggests that they are
not collinear.

Table 12 VIF and T for original MLR model

Unstandardized Standardized
Coefficients Coefficients Collinearity Statistics
Model B Std. Error Beta t P-val. | Tolerance VIF
1 (Constant) -64.527 65.070 -.992 324

SITE 36.151 10.468 425 | 3.454 .001 429 2.330
TRAINER 2.476 11.380 .028 218 828 398 2.512
CS_TITLE 17.018 9.767 1771 1.742 .085 .628 1.592
%I;gT—TESTING—FRAMEWORK—ADAP -14.927 21.838 -123] -.684 496 202 4.943
EXPERIENCE UNIT TESTING FRAM
EWORK_LIKERT SCALE 8.903 8.841 119] 1.007 316 464 2.157
EXPERIMENT_PROGRAMMING_LAN 23.861 17.329 230 1.377 172 233 4.292
GUAGE
EXPERIENCE EXPERIMENT PROGR
AMMING LANGUAGE_ACADEMY_Y 337 1.995 .022 169 .866 382 2.621
EARS
EXPERIENCE EXPERIMENT PROGR
AMMING LANGUAGE INDUSTRY_ Y 1.198 1.978 .086 .606 .546 321 3.119
EARS
OVERALL EXPERIENCE PROGRAM
MING ACADEMY YEARS 3.326 1.289 285 2.581 011 534 1.873
OVERALL EXPERIENCE PROGRAM
MING_INDUSTRY YEARS 959 1.039 135 923 358 304 3.292
EXPERIENCE UNIT TESTING LIKER
T SCALE -9.577 7.411 -.162]-1.292 .199 412 2.426
EXPERIMENT IDE USED DUMMY 16.605 9.187 190 1.807 .074 .590 1.694
TDD USED DUMMY -1.873 10.723 -017] -.175 .862 .650 1.540
TASK _ITLD 8.511 13.514 .094 .630 .530 290 3.449
SLICED_ITLD_DUMMY 29.735 13.477 330 2.206 .030 292 3.430

Dependent Variable: QLTY

The collinearity diagnostics of the model specified in Table 12, as shown in Appendix F, report that the
UNIT TESTING FRAMEWORK ADAPTED and EXPERIMENT PROGRAMMING LANGUAGE variables
have an collinearity problem. One way of solving the collinearity problem is to remove the most collinear variable,
which, in this case, is UNIT_TESTING FRAMEWORK ADAPTED.

The removal of collinear variables has two implications: one positive and one negative. The positive consequence
is the elimination of the UNIT TESTING FRAMEWORK ADAPTED variable, which represents the recoding of
the three testing frameworks (gTest, jUnit and Boost Test) into two (xUnit and Boost Test). The removal of
UNIT _TESTING FRAMEWORK ADAPTED variable eliminates the potential threats to wvalidity posed by

20

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

recoding. In either case, we checked that UNIT TESTING FRAMEWORK would have been collinear even if the
UNIT_TESTING FRAMEWORK had not been recoded.

On the negative side, (O’brien, 2007) discourages the removal of variables as a means to solve collinearity
problems. One exception to this advice is that the elimination is theoretically motivated. In our case, the collinearity
between UNIT TESTING FRAMEWORK ADAPTED, EXPERIMENT PROGRAMMING LANGUAGE and the
other variables is probably due to most of the experiments were run using Java and jUnit. In other words, the data that
we have are not diverse enough to identify the moderator effects of UNIT TESTING FRAMEWORK ADAPTED
and EXPERIMENTAL PROGRAMMING LANGUAGE. Furthermore, those variables are not related to the
construct of interest, i.e., programmer experience. Thus, the elimination of those variables looks justified and, in turn,
we obtain a reduction in the variance of the model residuals and more power to identify significant effects.

Note that this is not a single-phase process; it is repeated as often as necessary to output the best model whose
variables do not have serious collinearity problems. In our case, the final regression model was output after three
rounds, as shown in Appendix F. The regression model that meets the collinearity conditions is composed of 12
predictor variables, as shown below:

DEPENDENT VARIABLE =

Bi*SITE +

B.*CS_DEGREE +

Bs*EXPERIENCE UNIT TESTING FRAMEWORK LIKERT SCALE +

B4* EXPERIENCE EXPERIMENT PROGRAMMING LANGUAGE ACADEMIA YEARS +
Bs*EXPERIENCE EXPERIMENT PROGRAMMING LANGUAGE INDUSTRY YEARS +
Be*OVERALL EXPERIENCE PROGRAMMING ACADEMIA YEARS +

B7*OVERALL EXPERIENCE PROGRAMMING INDUSTRY YEARS +
Bs*EXPERIENCE UNIT TESTING LIKERT SCALE +
Bo*EXPERIMENT IDE USED DUMMY +

B1o*TDD_USED DUMMY +

Bii*TASK _ITLD +

Bi2*SLICED_ITLD DUMMY + Error

5.2.2 Determining the sample size necessary in order to achieve a statistical power of 80%

There are many ways of determining the minimum sample size for a regression model. The most often used are based
on: 1) number of model predictors or 2) the effect size and expected statistical power.

o Determining the sample size depending on the number of predictors

(Green, 1991) suggests two heuristic rules for determining an acceptable sample size. The first refers to the overall
goodness of fit of the model and the second to the goodness of fit of each of the independent variables in the model.

1. Overall goodness of fit of the regression model. A rule of thumb often used to determine overall goodness of
fit is that the required sample size for k variables is n = 50 + 8*k.

2. Goodness of fit for each independent variable in the model. The suggested minimum samples size is n = 104
+k.

As we have 12 independent variables, we would need approximately 50 + 8*12 = 146 subjects for a good overall
model fit, whereas we would need 104 + 12 = 116 experimental subjects in order to detect a significant effect for each
predictor variable. The two heuristic rules do not appear to be consistent (it does not make sense that the overall
goodness of fit of a model should be more demanding than for the 12 individual predictors). On this ground, we use
other methods to estimate the sample size later. In any case, the required sample size is consistent with the number of
subjects® in our dataset.

3 Although we had 126 experimental subjects, 11 observations were lost during the analysis as two subjects failed to complete
the experimental task, six failed to report their academic qualifications and four failed to report any experience. Consequently, we
were only able to effectively process 115 cases.

21

O Joy U WM

DO UGG OTOTOTE D DB BB D DD DNWWWWWWWWWWNNNRNNNNNNN R, R RRRFRR PR,
R WNRFROWOVWO-JONTRWNROW®®JIAOAURWNROWGWOW-JANOREWNRFROWOW®OW-JANTREWNRLOW®O-TI0 N WNR O W

e Determining sample size depending on the effect size

Apart from using the number of predictors, it is possible to determine the sample size depending on the effect size
and required statistical power. There are several ways of conducting this analysis. The most common one is to use
specialized tools like G*Power (Faul, Erdfelder, Lang, & Buchner, 2007). In this case, for 12 predictor variables, with
a moderate effect size (f2 = 0.15) and a statistical power of 80% (which is usually required to consider the results of
an empirical study to be reliable), we would require 127 subjects for a good overall regression model fit.

On the other hand, (Miles & Shevlin, 2001) propose some very useful plots that illustrate the sample sizes required
to achieve a power of 80% for different effect sizes and predictor numbers. In order to detect a moderate effect size
with 12 variables, we would need approximately 150 experimental subjects. A large effect only requires 60. In sum,
we believe that the available 126 (in actual fact 115) subjects are enough to detect moderate effects with a statistical
power very close to 80%. Additionally, as the sample size is large enough, we avoid the risk of overfitting.
Overfitting occurs when the model is a very good fit for the data because there are a large number of independent
variables with respect to number of cases/observations. This does not appear to apply in our case.

5.3 Results of model application

Table 13 and Table 14 show the results of the model regression for both QLTY and PROD, respectively. Note that
the observed patterns and effects are quite similar with respect to both quality and productivity. In both cases, the
models were significant, with R?>= 0.339 and R? = 0.422, respectively. It is thus possible to interpret the results for
each independent variable reported below.

5.3.1 Quality

As Table 13 shows, none of the programming experiences, except OVERALL EXPERIENCE PROGRAMMING
ACADEMIA YEARS, have a significant effect:

e Experience in the specific programming language wused in the experiment in industry
(EXPERIENCE_EXPERIMENT PROGRAMMING LANGUAGE INDUSTRY_YEARS) and in academia
(EXPERIENCE_EXPERIMENT PROGRAMMING LANGUAGE ACADEMIA YEARS) are nowhere near
statistical significance (p-value = 0.671 and 0.684, respectively) and have a very small and practically
negligible effect (Bs=-0.76 and Bs=0.79 respectively, which is equivalent in the independent variable metric to
increases or decreases of -0.76% and 0.79% per year, respectively). The same could be said about overall
programming experience gained by subjects in industry (OVERALL EXPERIENCE PROGRAMMING
INDUSTRY_YEARS).

e On the other hand, overall programming experience gained in academia (OVERALL EXPERIENCE
PROGRAMMING ACADEMIA YEARS) has a clearly significant (p-value = 0.004) moderate effect (3.6%
per year).

e Experience in the unit testing framework (EXPERIENCE UNIT TESTING FRAMEWORK
LIKERT SCALE) has a relatively large effect on quality compared to the other experience variables. The
quality of the product output by subjects improved according to experience level (i.e., “novice” as opposed to
“no experience” or “intermediate” as opposed to “novice”). Additionally, although not significant, the p-value is
relatively small (0.147). This variable is not significant because of its high standard error (8.5), which is
probably due to this variable being measured on a Likert scale. This suggests that this variable actually does
have an impact on the quality of the code produced by programmers.

e Unit testing (EXPERIENCE UNIT TESTING LIKERT SCALE) has a similar pattern to
EXPERIENCE UNIT TESTING FRAMEWORK LIKERT SCALE, albeit in the opposite direction. The
variable has a sizeable, but negative, effect (-11.25%). The p-value is also quite low, although not significant
(0.124) because of the high standard error associated with the variable (7.3), which was again measured on a
Likert scale.

Table 13 MLR results for QLTY

Model Unstandardized Standard t p- | 95.0% Confidence Collinearity
Coefficients ized val. Interval for B Statistics
Coefficie
nts
B Std. Beta Lower | Upper | Effect | Toleran | VIF
Error Bound | Bound | Size ce
(d)
22

O Joy U WM

Sl S I S I R S R e R N el e i
O JOH U WNRFR OWOWIU S WNEF O

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

TR

1 (Constant) -58.384| 29.399 -1.986] .050| -116.697 -.070

SITE 32.447 9.901 382 3.277] .001 12.809 | 52.085 .646 4771 2.095
CS_TITLE 18.813 9.412 .196 1.999] .048 145 37.482 .394 6731 1.485
EXPERIENCE_UNIT_TE 12.411 8.489 .166 1.462| .147 -4.428 1 29.249 288 5011 1.998

STING FRAMEWORK
LIKERT SCALE

EXPERIENCE_EXPERI 761 1786 -050| -426| 671 -4303| 2.780| -.084 474 2.109
MENT _PROGRAMMIN
G_LANGUAGE_ACADE
MY YEARS

EXPERIENCE_EXPERI 793 1.945 057| .408| .684| -3.064| 4.650| .080 330 3.029
MENT PROGRAMMIN
G_LANGUAGE_INDUS

OVERALL_EXPERIENC 3599 1.209 308| 2976| .004| 1200 5997 .586 6041 1.657
E_PROGRAMMING AC
ADEMY_YEARS
OVERALL_EXPERIENC 1.085 1.033 153 1.051] 296 -963| 3.134| 207 306 3.267
E_PROGRAMMING IN
DUSTRY_ YEARS

EXPERIENCE_UNIT_TE | -11.256 7.260 -191) -1.550| .124| -25.656| 3.143] -.305 4281 2.339
STING_LIKERT_SCALE

EXPERIMENT IDE_US 18.514 8.810 212 2.1021 .038 1.040| 35.989 414 6391 1.565
ED_DUMMY

TDD_USED_DUMMY -.463 9.917 -.004 -.047| 963 -20.133] 19.206| -.009 756 | 1.323
TASK ITLD 8.332 13.385 .092 622 535 -18.218| 34.881 123 2941 3.400
SLICED ITLD DUMMY 31.962 13.330 354 2.398] .018 5.521| 58.403 473 2971 3.372

Y YEARS

Dependent Variable: QLTY

Apart from the variables directly related to programmer experience, the analysis also yielded results related to

other

influential variables, all of which, except for subject academic background (CS DEGREE), are moderator

variables:

Subjects’ academic background (CS_DEGREE) has a statistically significant (p-value = 0.048) and big positive
effect (f= 18.8). Subjects with specialized training in computer science tend to produce products whose quality
is 18.8% better than non-computer scientists.

Subject typology (students vs. professionals) or, rather, the SITE where the quasi-experiments were run
(academia vs. industry) has a statistically significant (p-value = 0.001) and marked positive influence (B =
32.0). The industry subjects tend to output better quality code than students.

When subjects are familiar with the wuse of the IDE wused in the experiments
(EXPERIMENT IDE USED DUMMY), it has a statistically significant (p-value = 0.038) and positive effect
(Bo=18.5). In other words, code quality improves if subjects have used the IDE before.

The use of sliced specifications (SLICED ITLD DUMMY) has a big positive influence (Bi1o=31.96) on quality
irrespective of the task completed (TASK ITLD), which is not significant. The extent to which TDD skills
might improve the quality of programmer output (remember that the treatment was an Iterative test-last
strategy) also turned out not to be significant.

The results of the MLR cannot be graphically displayed, due to the existence of multiple independent variables
(the corresponding scatter plot would be 13-dimensional). However, we can create scatter plots for the most
interesting variables (overall programming experience, both for industry and academy), provided that we plot them

indep

endently, using the model residuals (which is probably arguable from the statistical viewpoint, but reasonably

accurate). The strategy is the following:

1.

We have created a predictive model including all the influential variables (e.g.: SITE, CS_DEGREE, etc.)
for quality, with the exception of the OVERALL PROGRAMMING EXPERIENCE ACADEMY
~ YEARS.

We have obtained the residuals of the model. The residuals represent the original data, once the influence of
the statistically significant variables (all the model variables, actually) has been removed.

We have plotted the model residuals against the variables representing the overall programming experience,
both for industry and academy.

23

O Joy U WM

DO UGG OTOTOTE D DB BB D DD DNWWWWWWWWWWNNNRNNNNNNN R, R RRRFRR PR,
R WNRFROWOVWO-JONTRWNROW®®JIAOAURWNROWGWOW-JANOREWNRFROWOW®OW-JANTREWNRLOW®O-TI0 N WNR O W

The corresponding scatter plots are shown in Fig. 1. It can be easily perceived that the point cloud has an
appreciable ascending direction. The regression lines confirm the visual impression. The variable
OVERALL EXPERIENCE PROGRAMMING ACADEMY_ YEARS is strongly correlated with quality (r = 0.26).
Correlation is statistically significant. In turn, OVERALL EXPERIENCE PROGRAMMING INDUSTRY_ YEARS
is weakly correlated with quality (r = 0.13), and this correlation is non-significant (p-value = 0.15).

> Linear = 0.017| R Linear = 0.068|

100.00000-] 100.00000-

50.00000 50.00000-

8
00000 g 00000 © “o

Unstandardized Residual QLTY
Unstandardized Residual QLTY

=) ©
e -] L 8°
DO 5 ®O cgo
-30.00000 -30.00000- ope o o
o)
00 o o o 2 o 0
o o
-100. T T T T T T T -1oo. T T T T T T
] 5 10 15 20 25 30 0 5 10 15 20 25
Overall experience in programming acquired in Overall experience in programming acquired in

academy (years)

Fig. 1 — Correlation between industry/academy experience and the residuals of the linear model with the variables SITE,
CS_DEGREE, EXPERIMENT _IDE_USED _DUMMY and SLICED_ITLD_DUMMY

5.3.2 Productivity

The results with respect to Productivity reported in Table 14 are more or less that same as the above, although they
differ as to the specific values. There are only two new noteworthy points:

e The significance associated with testing framework experience (EXPERIENCE UNIT TESTING
FRAMEWORK LIKERT SCALE) is p-value= 0.069, that is, very nearly significant. This strengthens our
belief that this variable does have an influence on both code quality and productivity (effect = 13.25%)).

e The statistical significance of unit testing experience (EXPERIENCE UNIT TESTING LIKERT SCALE) is
much greater (p-value = 0.404). The simplest, albeit not altogether convincing, explanation is that unit testing
experience does not affect productivity, despite it downgrading code quality.

Fig. 2 shows the scatter plot for the overall programming experience, both for industry and academy, using the same
strategy than in previous section. The variable OVERALL EXPERIENCE PROGRAMMING ACADEMY
_YEARS is strongly and significantly correlated with both productivity (r = 0.349). The correlation with
OVERALL _EXPERIENCE PROGRAMMING INDUSTRY_ YEARS is virtually zero.

5 Linear = 1.164E-4) » Linear = 0.122
100.00000 100.00000-
=] o o a 2 o
o oo © o o o o o
E oco © E o o =) o
—_ 50.000004 o - 50.00000< o
] <}] o
= 2 o 3 o
= 0§00 80 [0o © 2 o g ° 5
3 o o 2] o
= ge & £ & o
= 8% o 8
o erooeal @ o

& St ©120.19+0.06"] N 000007 §
35 o® e k-l 8
2 °] !
) o oo
3 ® D@ g o 0800 o o = o 8 L]
H go %0 ° 0 £ 800 8
,E @ OO o 2 806 00w
£ o o £ 8
= -50.00000 o o =2 -50.00000 o 0o

o o Co

-100. T T T T T T -100. T T T T T T T T T
o 5 10 15 20 25 30 1] 2 4 6 8 10 12 14 16
Overall experience ingragramming acquired in Overall experience in programming acquired in
industry academy

Fig. 2 — Correlation between industry/academy experience and the residuals of the linear model with the variables
SITE, EXPERIMENT IDE USED DUMMY and SLICED ITLD DUMMY

Table 14 MLR results for PROD

24

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

Model Unstandardized | Standardi t p-val. | 95.0% Confidence Collinearity

Coefficients zed Interval for B Statistics

Coefficie
nts
B Std. Beta Lower Upper | Effect | Toleranc| VIF
Error Bound Bound Size e
(d

1 (Constant) -1 24.927 -2.475 015 -111.142| -12.257

61.699
SITE 20252 8.394 263 2412 .018 3.601| 36.902 475 A771 2.095
CS_TITLE 14.333 | 7.980 165 1.796 .075 -1.496 30.162 354 .673] 1.485
EXPERIENCE_UNIT TE | 13.245| 7.198 .196 1.840 .069 -1.031| 27.522 363 5011 1.998
STING FRAMEWORK _
LIKERT SCALE
EXPERIENCE EXPERI -1.938| 1.514 -.140] -1.280 203 -4.941 1.065 -.252 4741 2.109
MENT PROGRAMMIN
G_LANGUAGE_ACADE
MY_YEARS
EXPERIENCE EXPERI =574 1.649 -.046 -.348 728 -3.844 2.696| -.068 330 3.029
MENT _PROGRAMMIN
G_LANGUAGE_INDUS
TRY_YEARS
OVERALL EXPERIENC 43451 1.025 410 4.238 .000 2.311 6.379 .835 .604 | 1.657
E PROGRAMMING AC
ADEMY_YEARS
OVERALL_EXPERIENC S19 .876 .081 593 554 -1.217 2.256 117 306 | 3.267
E_PROGRAMMING IN
DUSTRY_YEARS
EXPERIENCE_UNIT TE | -5.160| 6.155 -.096 -.838 404 -17.370 7.049| -.165 4281 2.339
STING LIKERT SCALE
EXPERIMENT IDE USE |} 17.573| 7.470 221 2.353 .021 2.757 32.389 464 639 1.565
D _DUMMY
TDD_USED_DUMMY -9.295| 8.408 -096| -1.106 272 -25.972 7.382| -.218 756 1.323
TASK ITLD 12.029 | 11.349 147 1.060 292 -10.482 34.540 209 294] 3.400
SLICED_ITLD DUMMY | 28.777] 11.303 352 2.546 .012 6.358| 51.196 502 2971 3.372

Dependent Variable: PROD

5.4 Normality and homoscedasticity examination

The MLR has two requirements: (1) the model residuals should be normally distributed and (2) the variance
should be the same across all independent variable levels. These conditions are studied below.

5.4.1

Normality of model residuals

We used the Lilliefors-corrected Kolmogorov-Smirnov and the Shapiro-Wilk tests in order to test for the
normality of model residuals, Error! Reference source not found.and Q-Q plots to Error! Reference source not
found.illustrate the results of the tests..

The Kolmogorov-Smirnov testError! Reference source not found. shows that the residuals are normal (p-value =
.200 > 0.05) for both Quality (QLTY) and Productivity (PROD). The Shapiro —Wilk test (which is better suited for
small sample sizes) returns a similar result. Skewness and kurtosis statistics are within the normal ranges of + 1, as
expected for normal distributions.

Table 15 Normality Tests

STATISTIC KOLMOGOROV-SMIRNOV* SHAPIRO-WILK
SKEWNESS KURTOSIS STATISTIC DF P-VAL. STATISTIC DF P-VAL.
QLTY .023 -470 .076 115 .096 986 115 261
PROD 310 .021 .072 115 .200" .989 115 464

*_ This is a lower bound of the true significance.
a. Lilliefors-corrected significance.

25

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

Q-Q plots simultaneously plot for each data point the observed residual value against the standardized residual value.
If the residuals are normally distributed, the points are arranged more or less on a straight line (bisecting the
coordinate axes). Fig. 3 (a) and (b)Error! Reference source not found. show that the residuals for both QLTY and
PROD line in a more or less a straight line. Q-Q plots confirm that the residuals follow a normal distribution.

a. QLTY b. PROD

Normal Q-Q Plot of Unstandardized Residual QLTY Normal Q-Q Plot of Unstandardized Residual PROD

Expected Normal
Expected Normal
i

T T
-100 -50 o 50 100 150 -100 -50 i) 50 100
Observed Value Observed Value

Fig. 3 — Q-Q plot of residuals (a. QLTY, b. PROD)

5.4.2 Testing for homoscedasticity

This condition can be tested visually using a scatter plot of the predicted and expected values of the standardized
residuals. As the plots in Fig. 4 (a) and (b) show, the variance is quite uniform across the range of standardized
predicted values in both cases. Thus, the data meet the homoscedasticity or equality of variances condition for both
Quality (QLTY) and Productivity (PROD). Note that this effect is clearer for PROD than for QLTY. For QLTY,
there is a region to the left of the plot with missing data points. This could pose a validity threat, as discussed in
Section 7.

a. QLTY b. PROD

Scatterplot Scatterplot
Dependent Variable: QLTY Dependent Variable: PROD

Regression Standardized Predicted Value
5
=53
o o© Q
o
?
o
o o
o
-]
Regression Standardized Predicted Value
i
o
o
&°
)
° o
©
o
[
o
o
o

Regression Standardized Residual Regression Standardized Residual

Fig. 4 — Scatter plot (a. QLTY, b. PROD)

6 Nonlinear analysis
Multiple linear regression (MLR) is often used for the analysis of large datasets. In this research, the directional

character of the research question (/hypotheses) and the existence of multiple independent variables make MRL the
best-suited analysis method. However, MLR has two limitations:

26

O Joy U WM

QOO OO oo DD DDDDANEDNDDWWWWWWWWWWNDNNMNDNDNNDNNDNMDNDNNNNNERERRRRRRRRRE
O IO U WNRPFPOWOWOJOOUDDWNREFEFOWOW-TOHDUDPD WNRPRPOWOWJIOUDdWNREOWOJOoU dWNDE O W

60
61
62
63
64
65

e The existence of potential nonlinear effects: It is possible that the relationship between experience and
performance has a bell-like shape, i.e., growing up to certain point (e.g., 40 years old), and decreasing both
to left and right. A linear regression model would report a null effect in this case. The decision tree could
split the dataset in three groups: left, middle and right side, along with their respective averages.

e Interactions when dummies or ordinal variables are involved: It is easy to define the interactions
between scale variables (i.e., multiplying them into a new variable which represents the interaction).
However, dummies and ordinal variables have arbitrary numerical codes. In this case, the multiplication
makes little sense. That is the reason why we have not included interactions in the MLR (in addition to a
propensity to analyse main effects only with limited size datasets).

In the following sections, we include the CART decision trees for the response variables QLTY and PROD,
respectively. This statistical procedure has been previously outlined in Section 4.4.

6.1 Quality

In order to create a decision tree, the researcher has some freedom to define the analysis parameters, such as the
max tree depth and the minimal number of cases per node. Choosing one of another value yields different (although
related) results.

We have set the max tree depth to 5. This is the default value in SPSS. We have tested different values for the number
of cases. The respective decision trees are shown in Appendix J. Trees with few levels are uninformative. Very
complex trees (many nodes and levels) are difficult to interpret. We examined the different trees and chose those with
average complexity (3-5 levels and 2 nodes per level). The most informative trees were obtained setting the number
of cases to 12 for parent nodes, and 6 for child nodes). It is noticeable that, according to (Glenwick, 2016), for small
datasets the optimum number of cases is the 10% and 5% of the sample size for parent and child nodes, respectively.
The values that we have chosen match exactly these percentages (our sample size is N = 124).

Fig. 5 shows the decision tree for the QLTY response variable. The tree has 5 levels (including the root node).
This root node defines the average quality for the entire population (59%). As we move down from the root node, we
find subpopulations defined by values of the independent variables exhibiting different quality averages.

The second level is defined by the SLICED ITLD DUMMY variable. This variable represents whether the
subjects have used a sliced specification during the experimental sessions. Those subjects who have used a sliced
specification (SLICED ITLD DUMMY > no, that is, SLICED ITLD DUMMY = yes) obtain 80% quality in
average. The average quality for non-sliced specifications is considerably lower (50%).

Two variables define the third level: OVERALL EXPERIENCE PROGRAMMING INDUSTRY YEARS and
OVERALL EXPERIENCE PROGRAMMING ACADEMY_ YEARS for non-sliced and sliced specifications,
respectively. This result is equivalent to the existence of two interactions SLICED ITLD DUMMY x
OVERALL_EXPERIENCE PROGRAMMING INDUSTRY_ YEARS and SLICED ITLD DUMMY X
OVERALL EXPERIENCE PROGRAMMING ACADEMY_ YEARS. These interactions have not been considered
in the MLR. In the case of non-sliced specifications:

e Subjects with very little industry programming experience (less than 0.6 years) perform poorly (quality =
19%). Subjects above 0.6 years obtain average quality values (56%).

e Among the 83 subjects that used a non-sliced specification, there are both students and professionals.
However, academy-related experience does not play a role in this level/branch. This suggests that subjects
with industry experience can use regular, real-life (non-sliced) specifications effectively, whereas subjects
with longer academic experience (probably, the students themselves) perform better with more detailed
(sliced) specifications (see below).

e Itis also noticeable that the variable OVERALL EXPERIENCE PROGRAMMING INDUSTRY YEARS
does not show a significant main effect (that is, by itself, without considering the type of specification) in the
MLR.

In the case of sliced specifications:

e Subjects with more than 2.5 years programming experience in academia obtain rather high quality scores
(89%). The scores situate in the average for lower experiences (59%).

e As above, among the 41 subjects in this group, there are both professionals and students. However, those
subjects who take more advantage of the sliced specifications are the ones with longer programming
experience obtained during their academic training.

The fourth level is defined by the variable EXPERIENCE EXPERIMENT PROGRAMMING
_LANGUAGE _ACADEMY_YEARS, regardless of the tree branch. The direction of the effect is as expected: longer

27

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

experiences increase quality scores by 19%-25%. However, this increment applies only to experienced (either in
industry or academy) subjects. Notice that this variable does not show a significant effect in the MLR.

The firth level is defined by the CS DEGREE and EXPERIENCE EXPERIMENT PROGRAMMING
LANGUAGE INDUSTRY_YEARS. Holding a CS degree makes a big difference in the average scores (22%
difference). The impact of the industry experience in the programming language used in the experiment is negligible
(4% difference).

In general, the results of the CART decision tree are aligned to the MLR. The most influential variable is the sliced
character of the specification. This variable has the 2™ larger effect size in the MLR, and it appears at the top level in
the decision tree. The overall programming experience obtained in academy and holding a CS degree also show
beneficial effects both in the MLR and the decision tree.

There are some differences as well between the MLR and the CART decision tree. The site where the experiment
was conducted and the actual usage of the IDE used during the experiment do not appear as explanatory variables in
the CART tree. In turn, the overall programming experience in academy appears to be influential, although limited to
non-sliced specifications. The experience in the programming language used in the experiment obtained in academy
has an influential effect also, but only for experienced (either industry or academy) subjects.

QLTY_ITLD

Node 0
Mean 58.816
Std. Dev. 42.181
n 124

100.0
Predicted 58816

SLICED_[TLD_DUMMY
Improvement=214.210

<= No > No
|

Node 1 Nede 2
Mean 48,530 Mean 79.640
Std. Dev. 43.801 Std. Dev. 28.565
n 23 n a1
% 66.9 % 33.1
Predicted 48.530 Predicted 78.640

= [=

Overall experience in
programming acquired in

Overall experience in
pregramming acquired in

industry academy
Improvement=153.204 Improve ment=63.582

<=|D.6 > ‘ B <=|2.5 > |.5

Node 3 Node 4 Node 5 Node B
Mean 15.358 Mean 56.043 Mean 59.225 Mean 88.118
Std. Dev. 37.074 Std. Dev. 42,451 5td. Dev. 37.440 Std. Dev. 18.444
n 17 n BE n 13 n 28
% 13.7 % 53.2 % 10.5 % 22.6
Predicted 18.35% Predicted 56.043 Predicted 5%.225 Predicted 858.119

I = =

Experience in programming

language used in the
experiment acquired in

academy
Improvement=83.621

Experience in pregramming
language used in the
experiment acquired in

academy
Improveme nt=14.648

<=18 >18 <=0.2 >02

| | \

Node 7 Node & Mode & Nede 10
Mean 44.547 Mean 70.201 Mean 75.169 Mean 53.769
Std. Dev. 42.485 Std. Dev. 38.631 Std. Dev. 35.31% Std. Dev. 6.735
n BY. n 29 n 7 n 21

29.8
Predicted 44.547

% 23.4
Predicted 70.201

% 5.6 16.9
Predicted 75.16% Predicted 53.769

Have a degree in CS
Improvement=29.456

[\ =
Experience in programming
language used in the
experiment acquired in industry
Improvement=0.805

Cumpule‘.r sience No computer sience <= 0.750 > 0.750
Node 11 Nede 12 Nede 13 MNede 14
Mean 74.730 Mean 52.841 Mean 51.483 Mean 85.847
Std. Dev. 37.396 Std. Dev. 41.805 5td. Dev. 7.420 Std. Dev. 5.585

n 23 n 3 n 10 n 11

% 185
Predicted 74.730

% 4.8 % 81 % 89
Predicted 52,841 Predicted 01483 Predicted ©85.847

Fig. 5— CART decision tree for QLTY

28

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

6.2 Productivity

We have used the same values for the max tree depth, and number of cases per node, than in the previous section. The
corresponding tree is displayed in Fig. 6.

The tree has only 4 levels, and a much simple splitting pattern than Fig. 5. The grand mean is 39%. The second
level is defined by SLICED ITLD DUMMY variable. Those subjects who used a sliced specification perform better
(36% difference in average) than those who used a regular specification. The subjects who used a sliced specification
can be further divided at the third level depending on their overall programming experience acquired in academia.
Again, those subjects with longer experiences (1.5 or more years) perform dramatically better (45% difference) than
inexperienced ones. Finally, the fourth level is defined by the actual usage of the experimental IDE, exhibiting
smaller but also considerable improvements (24% difference).

The coincidences with the MLR are almost perfect. All variables, with the exception of SITE, that yielded
significant results in the MLR, also appear as influential in the CART decision tree. It is also noticeable that the
second and third levels in Fig. 6 replicate the right branch in Fig. 5. This suggest that the most influential variables
are independent of the measurement procedure (i.e., the concrete response variable used).

PROD_ITLD

Mode O i
Mean 39,132
Std. Dev. 38.016 |
fi 124
%

; 000 i
Predicted 39.132

SUCED_ITLD_DUMMY
Imiprove me nt= 294, 164

<= No > iﬁn

Node 1 Node 2
Mean 27.077 Mean 53,534
Std, Dev, 33.64% Std. Dev, 34.798
n 83 n 41
% 66,5 L) 331
Fredicted 27.077 Predicted £3.534
o
I E N B0

Overall experience in
programming acquired in
academy
Improvement=116,435

<= 1.5 =15

Node 3 Node 4
Mean 28,150 Mean 73.486
Std. Dew. 32.106 Std. Dav. 28.822
n 9 n 32
% 7.3 *® 25.8
Predicted 28.150 Predicted 73486

i - fl

B E N] = = B SEE

Current usage of the |DE used

in the experiment
Improvement=35.998

<m N = No
| |

Mode 5 Node 6
Mean 56.537 Mean 20,119
Std, Dev. 39103 Std. Dev, 21.238
n 9 n 23
% 7.3 % 18,5
Predicted 56.537 Predicted 80.11%

-

Fig. 6 — CART decision tree for PROD

29

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

7 Discussion

7.1 Preliminary considerations

Before trying to interpret the results, it is worth considering whether: (1) the measurement of experience (in years)
yield different results than the measurement of experience using Likert scales, and (2) whether there are any
systematic differences (note, for example, that the analysis omitted the EXPERIMENT CODE variable) between
experiments that rule out joint analysis and pose a threat to the validity of the results.

With regard to the first question, Appendix G reports the MLR analysis in which experience measured in years
was replaced by variables measured on a Likert scale. The observed trends in terms of both B-values and statistical
significance are exactly the same. Indeed, the standard error for the
EXPERIENCE EXPERIMENT PROGRAMMING LANGUAGE LIKERT SCALE and
OVERALL EXPERIENCE PROGRAMMING LIKERT SCALE variables is inflated with respect to their
equivalent values measured in years. This worsens the detection of significant effects.

With regard to the second question, Appendix H analyses the model residuals against the EXPERIMENT CODE
variable. We noted in Section 5 that the model residuals were normal and, consequently, had zero mean and random
but constant variance. The boxplots charting the residuals by experiment appear to follow the same pattern: each box
is centred around zero, and the Q1-Q3 ranges are almost equal (note that there are not many subjects in each
experiment, so exact matches are unlikely). The results of the tests of the equality of means (a univariate ANOVA)
are not significant. This implies that the quality or productivity does not depend on the concrete company or
university were the quasi-experiments were conducted. The Levene test is significant for Quality, but non-significant
for Productivity. Nevertheless, it is not a surprise that that the quasi-experiments have different variances due to
sample size and diversity of the underlying populations. It appears, therefore, that the data can be jointly analysed and
interpreted.

7.2 Effect of experience

The results of the Multiple Linear Regression (MLR) suggests that programming experience (except for
OVERALL EXPERIENCE PROGRAMMING ACADEMIA YEARS) is not related to better programmer
performance (in terms of quality or productivity). In turn, the impact of the programming experience gained in
academia is considerable. In terms of percentages, each training year adds around 4% increment in both quality and
productivity, i.e., 3 years of programming experience gained by subjects during their degree (a reasonable
assumption) implies that the code contains 12% less errors (in average). In terms of Cohen’s effect size, these
values represent a medium effect size for quality (d = 0.59) and a large effect size for productivity (d = 0.84).

These results appear to be consistent with the more modern theories of experience (Ericsson, 2006a) that make a
distinction between length of service (which does not lead to expertise) and deliberate and intensive practice (which
does lead to expertise):

e The experience gained in industry could (generally) be considered as a routine. Professionals are expected to
“do their job” within some standard limits of quality and productivity, e.g.: the average company defect rate.
Although at the individual level programmers can attend to training courses and/or self-educate to beat those
limits, such improvement is not likely intensive enough (e.g., not performed daily for several hours), because
the daily work is priority, and the remaining (/spare) time is usually filled with personal or family activities.

e In academia, students perform programming tasks within training courses. In turn, these courses are typically
designed in such a way that: (1) new topics are introduced progressively; (2) the difficulty of the tasks, e.g.,
programming assignments, increase with time and (3) students make every effort, every day during the
academic period, to get high grades. Thus, the salient feature of academia is deliberate and intensive training,
and according to Ericsson’s theory it should make an effect on performance, which is exactly what we have
observed in this research.

Of course, the problem is how to reconcile our results with the findings of previous programming studies. We
cannot, of course, rule out error on our part. However, we can venture a hypothesis. Table 6 to Table 10 show the
average quality and productivity achieved by subjects depending on their programming experience and SITE
(academia, industry), without considering the other variables in the analysis. As said before, these tables should be
used merely to identify trends and not as an independent instance for analysis. However, the data reported are
informative:

e Looking at the average values for academia, we find that there is a clear trend towards better performance as
experience increases. This being true, studies that use students with different experience levels (e.g.: freshmen

30

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

vs. seniors) could find significant differences between them. There is some evidence that the positive effects
of experience become visible in this context, e.g., (Daun, Salmon, Weyer, & Pohl, 2015; Runeson, 2003).

e In industry, the data plot has zigzag profile with no clear trends. However, the MLR yields a positive,
significant effect for SITE, i.e., professionals perform better than students in average (see Section 5.3.1).
Considering that several studies have been conducted comparing students with professionals, it is not
surprising that they found that experience did have an effect.

The decision trees give a somewhat different picture. The most noticeable difference is the absence of the variable
SITE in both trees, whereas SITE has a strong, statistically significant effect (§ > 20%, Cohen’s d > 0.4) in the MLR
for both quality and productivity. The reason for difference lies, most likely, in an interaction among variables.

The decision tree algorithm splits the root note using the variable that more clearly separates the original dataset
into subsets. This variable is SLICED ITLD DUMMY (i.e., the sliced character of the specification), both for
quality and productivity. This decision could be expected just by looking at the MLR tables, because
SLICED ITLD DUMMY has the greatest effect size, both for quality and productivity.

Further splitting is dependent upon the decisions taken in the higher level nodes i.e., they represent interactions.
Here, the splitting pattern draw a distinction between quality and productivity.

e For quality, the 2nd level nodes are defined by two variables:
OVERALL EXPERIENCE PROGRAMMING INDUSTRY YEARS (for non-sliced specifications) and
OVERALL EXPERIENCE PROGRAMMING ACADEMY_ YEARS (for sliced specifications).

e For productivity, only the node corresponding to sliced specifications breaks down into two child nodes,
defined again by the OVERALL EXPERIENCE PROGRAMMING ACADEMY YEARS variable.

We venture that the positive, statistically significant effect for SITE in the MLR is related to the interaction
SLICED ITLD DUMMY X OVERALL EXPERIENCE PROGRAMMING INDUSTRY YEARS and
SLICED ITLD DUMMY x OVERALL EXPERIENCE PROGRAMMING ACADEMY YEARS. The MLR does
not contain this interaction, so that SITE is assigned the variability associated to SLICED ITLD DUMMY x
OVERALL EXPERIENCE PROGRAMMING INDUSTRY YEARS. The p-values in the MLR tables (see
Sections 5.3.1 and 5.3.2) also back up this explanation: SITE has lower p-values (or higher effect size) for quality;
OVERALL EXPERIENCE PROGRAMMING INDUSTRY YEARS emerges precisely in the quality decision
tree).

If we accept that programming experience in industry has an effect when subjects use non-sliced specifications,
the previous argumentation regarding the routine character of the experience in industry would be wrong. In reality,
the impact of the experience in industry is rather low. The child nodes are split at 0.6 experience years, and only a
fraction of subjects (17 vs. 66) are located the in low performing node. In other words, after 7 experience months,
there are not substantial differences in practitioners’ performance (in average).

We have not discussed further above the impact of the sliced character of the specification because it is secondary
for this paper’ research goal, but a quick look at Appendix B clearly shows that sliced specifications are more detailed
and provide guidance to the programmers during the coding task. We expected that sliced specification exhibit higher
quality and productivity scores. However, it is somewhat surprising that sliced specifications interact with
programming experience. In our opinion, we are envisioning a domain knowledge effect here:

e Non-sliced specifications (not the ones we provide in Appendix B but comparable to some extent) are
typically used in industry. After some time (our decision tree says 0.6 years), programmers get used to this
type of specification and solve the corresponding task professionally.

e Students are not usually exposed to problem assignments where a lot of domain knowledge is needed to
enable resolution. Problem sheets are typically detailed (again, comparable to the specifications in Appendix
B, including hints and examples to ease understanding. Students get used to this type of documents after
some time (2.5 years) and become proficient.

The influence of the type of specification represents, probably, another confirmation of the specificity of the
experience (K. A. Ericsson & Lehmann, 1996). Subjects exhibit expertise in some domains only. Notice the restricted
character of domain, which is linked in our case to specification types. Domain influence could extend to the types of
tasks, development environment, etc. We discuss these issues below.

7.3 Effect of other variables

Three other variables (besides the sliced character of the specification) have shown a clear influence on
programmer performance, although only the first was statistically significant: use of IDE, testing framework
experience and unit testing experience.

31

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

The results for IDE use and testing framework experience are not at all surprising. It is reasonable to assume that
the use of proper tools should improve programmer performance. It is remarkable, however, that these variables
(whose associated B-values are from 10% to 20%) should have such a noticeable effect.

With regard to unit testing experience, we did not expect to find that it had negative effects. There are two more or
less obvious interpretations of this result. Subjects who are experienced in unit testing might pay more attention to
quality and thus be less productive. However, the result of the MLR suggests just the opposite. Unit testing
experience has a negative impact on quality (with a B-value of around -10%, not far from statistical significance) but
not on productivity (p-value = 0.4, far from statistical significance).

A possible alternative argument is that the testing activity and the programming activity are performed by different
subject profiles, i.e., testers do not make code and programmers do not code. An obvious implication of this
assumption would be that testers (i.e., people with unit testing experience) achieve low quality and productivity
scores. This could be true: Quality decreases as unit testing experience increases, and although productivity has a
large p-value, the associated B-value is negative, around -5%. However, the correlations between unit testing
experience and programming experience are substantial, positive (» = 0.3) and statistically significant. Also, the
correlation between unit testing experience and testing framework experience is very high, positive (» = 0.568) and
statistically significant. In other words: it seems that testers do know (at least in our sample) how to make code.

The reason why unit testing experience leads to decreasing quality and productivity is unclear for us; it requires
further research.

8 Validity Threats

8.1 Threats to statistical conclusion validity

o Homoscedasticity-related problems. Although the regression model for external quality satisfactorily meets
the normality condition, we found, when testing for homoscedasticity, that the data were not uniformly
distributed. Heteroscedasticity does not affect the estimation of the regression model coefficients (B-values),
although it does influence statistical significance. We believe that this threat is not at work, as our results with
respect to programming experience show that the associated effect sizes are very small. On this ground,
although the statistical significances could be affected, we can likewise conclude that experience does not have
a sizeable effect on code quality and subject productivity.

¢ Unbalancing in some independent variables. The parameter estimation could be subject to unbalanced groups
(for example, academic background or use of IDE). However, although we cannot rule out this having a
negative effect among variables, we believe that this threat does not challenge our main findings on two
grounds: (1) the size and power of the regression models are large enough, and they are significant, normal and
reasonably homoscedastic, and (2) unbalancing does not affect the main variables concerning programming
experience.

¢ Recoding of the Experience in testing framework used in the experiment variable. The process of recoding
applied to the testing framework experience levels could cause some sort of bias. However, this should not
happen on two grounds: (1) this variable has been removed from the model on collinearity grounds, and (2) we
have found that, if introduced into the MLR without applying recoding (i.e., considering all three levels —
gTest, jUnit and Boost Test—), this variable is still collinear and would therefore also have been removed from
the model.

e Measurement bias. Each quasi-experiment was measured by a single measurer. More than one person should
conduct the measurement process in order to improve measurement accuracy. In order to counteract this threat,
we defined and gave experimental subjects API code templates for the experimental tasks. These code
templates contain methods and parameters definitions that can be used to solve the experimental tasks. Those
methods and parameters are also used by the test suites. Code templates reduce the manipulations that
measurers need to make in the subjects’ code, improving between-measurers accuracy.

8.2 Threats to internal validity

e Ambiguity surrounding the causality of the effects. Since this is quasi-experimental research, the conclusions
cannot be interpreted in causal sense. In our research, we have studied several independent variables (k = 12)
regarding experience or specialized knowledge for performing an experimental task. However, there could be
moderator variables that we have not taken into account and that explain the results, e.g., variables referring to

32

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

8.3

8.4

soft skills or programmer personality. The strategy that we used to counteract this was to measure all the
moderator variables that looked as if they might realistically have an effect on code quality and programmer
productivity. But, of course, we cannot be sure that we have considered all the relevant variables.

Population heterogeneity. The results of this research may be threatened by combining several experimental
populations with different characteristics, which could interact with experience and counteract the effects when
analysed jointly. We believe that this threat is not at work.

Individual experiments (in particular, industry experiments) have insufficient sample size for the regression
model achieving a minimum power. The approach that we have followed to assess whether the population
coming from a given experiment (which, in turn, corresponds to a concrete company/university and moment in
time) exhibit a particular behavior is the examination of the global regression model residuals at the experiment
level. We have not detected substantial differences between the model residuals when they are studied
separately by experiment (see appendix H).

Population subgroups can be defined on different grounds. Probably, the two most relevant (and meaningful)
sub-populations are students vs. professionals. When they are analysed independently, the results are not
exactly alike, but much the same; in particular, the lack of effect of industry experience, and the positive effect
of academic training, does not change.

On the other side, the mix of populations can be seen as a strength of our study, as the diversity of the
populations increases the external validity of the resulting conclusions.

Perturbations caused by the use of ITLD. Although ITLD is a very well-known and popular strategy among
programmers, we cannot be sure that all the subjects were familiar with its use. This might lead to a change in
the subjects’ work method, which would affect their productivity and performance. We have applied two
strategies to counteract this threat. First, we provided specific training on ITLD before applying the treatment.
Second, we did not oblige programmers to apply a particular ITLD variant; it was left up to them to apply
whichever ITLD strategy they saw fit without this having any impact whatsoever on the response variable
measurement.

Perturbations caused by the use of specific IDEs or Unit Testing Frameworks. A large proportion of
subjects do not have experience with the IDE used during the experiment and/or unit testing. Although we have
controlled these variables explicitly (notice that they have been included both the in multiple linear regression
and decision tree analyses), we cannot rule out that experienced subjects perform particularly bad when they
have to code in unfamiliar contexts (e.g., an IDE they do not know). This makes identifying experience effects
more difficult.

Threats to construct validity

Nature of the experimental tasks. We used the MarsRover API (MR) and Bowling Scorekeeper (BSK)
experimental tasks. Both are basically algorithmic tasks. BSK uses some terms (e.g., strike, spare) with which
the experimental subjects may not be familiar. These tasks were specified in two ways: sliced and non-sliced.
We cannot rule out that these decisions may have biased our results. In order to counteract this threat, we
included variables that represent the task and the specification type in the MLR analysis, which we trust will
separate their effects from the effects of experience.

Threats to external validity

Effects of programming experience vs. domain knowledge. The area of expertise under study is
programming. Programming is generally defined here as consisting of knowledge of programming languages,
algorithms and strategies (e.g., dynamic programming), good practices (e.g., design patterns), some libraries
(e.g., regex), etc. Programming could also be construed as meaning knowledge of how to perform a task in a
specific domain, e.g., code a specific network controller. Our aim was to study the effect of programming
experience and not the effect of domain knowledge (which is ultimately another facet of expertise). BSK and
MR are outside of the domain of the experimental subjects, particularly professional programmers. By using
tasks that are outside the programmer’s domain, we have separated the effects of domain knowledge from the
effects of programming experience. Therefore, our results: (1) should be interpreted exclusively in terms of the
effect of programming experience (the results might differ if we used other, more familiar experimental
problems), and (2) have greater external validity, as they are domain independent.

Limitation of the number of experimental problems. We have only used two experimental problems (MR
and BSK) so that the groups derived from the combination of treatments, tasks and blocking variables have the

33

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

largest possible number of subjects. This improves the statistical analysis. On the other hand, our study has been
conducted in a limited setting. Therefore, our results should be extrapolated to other contexts with due caution.

9 Conclusions

This paper studied the effects of different types of experience (academic background, programming experience, unit
testing experience, and IDE and TDD use) on the performance of a set of 126 programmers from four companies and
three universities across 10 quasi-experiments. The experimental design used separates the effects of domain
knowledge from the effects of programming experience, which is the focus of this study.

The most important result is that years of experience are not able to predict programmer performance at all. The
only exception is years of programming experience in academia (in other words, years of training), which does
appear to have a positive influence on programmer performance. Other influential variables are testing framework
experience and routine use of the IDE, which we believe reflects the positive influence of modern programming tools
on programmer performance.

From another viewpoint, companies should give serious consideration to their programmer lifelong training, as the
mere repetition of routine tasks does not improve their performance beyond mere competency. However, training
courses may, or may not, contribute to increased performance. For instance, industry training courses tend to skip
strict performance assessment, on social, psychological or labor law grounds. In turn, academic training is
characterized by setting goals and thresholds, and reasonably strict assessment procedures. To what extent
transferring academic strategies to industry could be successful? Which strategies have higher yields? Answering
those questions require interdisciplinary research, from the perspectives of applied psychology, education, and
software engineering disciplines.

From the viewpoint of the representativeness of our sample, as well as the statistical power and rigour of the
analysis, the above results are reasonably reliable. There are, however, many open questions. The model’s coefficient
of determination (R’ = 0.4) clearly indicates that there is a lot of unexplained variance. This variance is very likely to
due to programmers’ personal characteristics (soft skills or personal traits). For example, the negative effects of unit
testing experience appear to be related to the programmer’s profile. We intend to explore this line of research in the
future.

Acknowledgement

We would like to acknowledge Dr.Hakan Erdogmus who contributed to the design of one of the tasks used in the
study (BSK) and the corresponding test cases. We also wish to acknowledge Mr. Timo Raty for his participation in
the creation of the code templates for C++, and the training given in one of the quasi-experiments. We wish also
acknowledge Mr. Adrian Santos for his support in the collection of the subjects’ data.

References

Adelson, B. (1981). Problem solving and the development of abstract categories in programming languages. Memory
& Cognition, 9(4), 422-433.

Adelson, B. (1984). When novices surpass experts: The difficulty of a task may increase with expertise. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 10(3), 483.

Adelson, B., & Soloway, E. (1985). The role of domain experience in software design. /[EEE Transactions on
Software Engineering, (11), 1351-1360.

Agarwal, R., & Tanniru, M. R. (1991). Knowledge extraction using content analysis. Knowledge Acquisition, 3, 421-
441.

Aranda, A., Dieste, O., & Juristo, N. (2014). Evidence of the presence of bias in subjective metrics: Analysis within a
family of experiments. Proceedings of the 18th International Conference on Evaluation and Assessment in
Software Engineering (EASE 2014), London, UK. pp. 24-27.

Arisholm, E. Gallis, H., Dyba, T. & Sjoberg, D. I. K. (2007). Evaluating pair programming with respect to system
complexity and programmer expertise. [EEE Transactions on Software Engineering, 33(2), 65-86.

Armour, P. G. (2004). Beware of counting LOC. Communications of the ACM, 47(3), 21-24.

Askar, P., & Davenport, D. (2009). An investigation of factors related to self-efficacy for java programming among
engineering students. The Turkish Online Journal of Educational Technology, 8(1), 26-32.

34

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

B. Kitchenham, & E. Mendes. (2004). Software productivity measurement using multiple size measures. /[EEE
Transactions on Software Engineering, 30(12), 1023-1035.

Belsley, D. A. (1991). Conditioning diagnostics: Collinearity and weak data in regression Wiley.

Bob, U. (2005). The bowling game kata. Retrieved from
http://butunclebob.com/ArticleS.UncleBob.TheBowlingGameKata

Brandmaier, A. M., von Oertzen, T., McArdle, J. J., & Lindenberger, U. (2013). Structural equation model trees.
Psychological Methods, 18, 71-86.

Burkhardt, J., Détienne, F., & Wiedenbeck, S. (1997). Mental representations constructed by experts and novices in
object-oriented program comprehension. In S. Howard, J. Hammond & G. Lindgaard (Eds.), (pp. 339-346)
Springer US.

Burkhardt, J., Détienne, F., & Wiedenbeck, S. (2002). Object-oriented program comprehension: Effect of expertise,
task and phase. Empirical Sofiware Engineering., 7(2), 115-156.

Camerer, C. F., & Johnson, E. J. (1997). 10 the process-performance paradox in expert judgment: How can experts
know so much and predict so badly? Research on Judgment and Decision Making: Currents, Connections, and
Controversies, , 342.

Campbell, R. L., & Bello, L. D. (1996). Studying human expertise: Beyond the binary paradigm. Journal of
Experimental & Theoretical Artificial Intelligence, 8(3-4), 277-291.

Chase, W. G., & Simon, H. A. (1973). The mind's eye in chess.
Chmiel, R., & Loui, M. C. (2004). Debugging: From novice to expert. ACM SIGCSE Bulletin, , 36. (1) pp. 17-21.

Chulis, K. (2012). Optimal segmentation approach and application. clustering vs. classification trees. Retrieved from
http://www.ibm.com/developerworks/library/ba-optimal-segmentation/

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (Second ed.). Hillsdale, NJ: Lawrence
Erlbaum Associates.

Colvin, G. (2008). Talent is overrated: What really separates world-class performers from EverybodyFElse Penguin
Publishing Group.

Cooke, N. J., & Schvaneveldt, R. W. (1988). Effects of computer programming experience on network
representations of abstract programming concepts. International Journal of Man-Machine Studies, 29(4), 407-
427.

Crosby, M., Scholtz, J., & Widenbeck, S. (2002). The roles beacons play in comprehension for novice and expert
programmers. /4th Workshop of the Psychology of Programming Interest Group, Brunel University. 58-73.

Curtis, B. (1984). Fifteen years of psychology in software engineering. Individual differences and cognitive science.
Orlando, Florida, USA: IEEE Press.

Curtis, B., Krasner, H., & Iscoe, N. (1988). A field study of the software design process for large systems.
Communications of the ACM, 31(11), 1268-1287.

Darcy, D. P., & Ma, M. (2005). Exploring individual characteristics and programming performance: Implications for
programmer selection. Proceedings of the 38th Annual Hawaii International Conference on System Sciences,
314a-314a.

Daun, M., Salmon, A., Weyer, T., & Pohl, K. (2015). The impact of students' skills and experiences on empirical
results: A controlled experiment with undergraduate and graduate students. Proceedings of the 19th
International Conference on Evaluation and Assessment in Software Engineering, Art. No. 29.

Davies, S. P. (1991). Characterizing the program design activity: Neither strictly top-down nor globally opportunistic.
Behaviour & Information Technology, 10(3), 173-190.

De Groot, A. D.(1978). Thought and choice in chess Walter de Gruyter.

Doane, S. M., Pellegrino, J. W., & Klatzky, R. L. (1990). Expertise in a computer operating system:
Conceptualization and performance. Human-Computer Interaction, 5(2), 267-304.

Erdogmus, H., Morisio, M., & Torchiano, M. (2005). On the effectiveness of the test-first approach to programming.
Software Engineering, IEEE Transactions on, 31(3), 226-237.

Ericsson, K. A. (2006a). The influence of experience and deliberate practice on the development of superior expert
performance. The Cambridge Handbook of Expertise and Expert Performance, , 683-703.

35

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

Ericsson, K. A. (2006b). An introduction to cambridge handbook of expertise and expert performance: Its
development, organization, and content. In K. A. Ericsson, N. Charness, R. R. Hoffman & P. J. Feltovich (Eds.),
The cambridge handbook of expertise and expert performance (pp. 3-19) Cambridge University Press.

Ericsson, K. A., & Charness, N. (1994). Expert performance: Its structure and acquisition. American Psychologist,
49(8), 725.

Ericsson, K. A., & Lehmann, A. C. (1996). Expert and Exceptional Performance: Evidence of maximal adaptation to
task constraints. Annual Review of Psychology, 47(1), 273-305.

Ericsson, K. A., Krampe, R. T., & Tesch-Romer, C. (1993). The role of deliberate practice in the acquisition of expert
performance. Psychological Review, 100(3), 363-406.

Experience. (n.d.). Retrieved October 7, 2015, from http://www.merriam-webster.com/dictionary/experience

Faul, F., Erdfelder, E., Lang, A., & Buchner, A. (2007). G* power 3: A flexible statistical power analysis program for
the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191.

Fenton, N., & Bieman, J. (2014). Software metrics: A rigorous and practical approach, third edition. CRC Press.
Field, A., Miles, J., & Field, Z. (2012). Discovering statistics using R. SAGE Publications.

Glenwick, D. S. (2016). Handbook of methodological approaches to community-based research: Qualitative,
quantitative, and mixed methods Oxford University Press.

Green, S. B. (1991). How many subjects does it take to do A regression analysis. Multivariate Behavioral Research,
26(3), 499-510.

Hedges, L. V., & Olkin, 1. (1985). Statistical methods for meta-analysis Academic Press.

Heiberger, R. M., & Holland, B. (2013). Statistical analysis and data display: An intermediate course with examples
in S-plus, R, and SAS Springer New York.

ISO, I. (2011). IEC25010: 2011 systems and software engineering—Systems and software quality requirements and
evaluation (SQuaRE)—System and software quality models. International Organization for Standardization,

Jeffries, R., Turner, A. A., Polson, P. G., & Atwood, M. E. (1981). The processes involved in designing software.
Cognitive Skills and their Acquisition, 255, 283.

Jorgensen, M., Faugli, B., & Gruschke, T. (2007). Characteristics of software engineers with optimistic predictions.
Journal of Systems and Software, 80(9), 1472-1482.

Larkin, J., McDermott, J., Simon, D. P., & Simon, H. A. (1980). Expert and novice performance in solving physics
problems. Science (New York, N.Y.), 208(4450), 1335-1342.

Lee, W. K., Chung, I. S., Yoon, G. S., & Kwon, Y. R. (2001). Specification-based program slicing and its
applications. Journal of Systems Architecture, 47(5), 427-443.

Lui, K. M., & Chan, K. C. C. (2006). Pair programming productivity: Novice—novice vs. expert—expert. International
Journal of Human-Computer Studies, 64(9), 915-925.

MacCallum, R., Zhang, S., Preacher, K., & Rucker, D. (2002). On the practice of dichotomization of quantitative
variables. , 7. pp. 10-40.

MacDorman, K. F., Whalen, T. J., Ho, C., & Patel, H. (2011). An improved usability measure based on novice and
expert performance. International Journal of Human-Computer Interaction, 27(3), 280-302.

Madeyski, L. (2005). Preliminary analysis of the effects of pair programming and test-driven development on the
external code quality. Proceedings of the 2005 Conference on Software Engineering: Evolution and Emerging
Technologies, pp. 113-123.

Marakas, G. M., & Elam, J. J. (1998). Semantic structuring in analyst and representation of facts in requirements
analysis. Information Systems Research, 9(1), 37-63.

Mayer, R. E. (1997). From novice to expert. In M. Helander, T. K. Landauer & P. Prabhu (Eds.), Handbook of
human-computer interaction (2nd ed., pp. 781-795) Elsevier Science B.V.

McDaniel, M. A., Schmidt, F. L., & Hunter, J. E. (1988). Job experience correlates of job performance. Journal of
Applied Psychology, 73(2), 327.

McKeithen, K. B., Reitman, J. S., Rueter, H. H., & Hirtle, S. C. (1981). Knowledge organization and skill differences
in computer programmers. Cognitive Psychology, 13(3), 307-325.

36

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

Miles, J., & Shevlin, M. (2001). Applying regression and correlation: A guide for students and researchers SAGE
Publications.

Muller, M. M. & Padberg, F. (2004). An empirical study about the feelgood factor in pair programming. Proceedings.
10th International Symposium on Software Metrics, 151-158.

Miiller, M. M., & Hofer, A. (2007). The effect of experience on the test-driven development process. Empirical
Software Engineering, 12(6), 593-615.

Munir, H., Moayyed, M., & Petersen, K. (2014). Considering rigor and relevance when evaluating test driven
development: A systematic review. Information and Software Technology, 56(4), 375-394.

Nisbet, R., Elder, J., & Miner, G. (2009). Handbook of statistical analysis and data mining applications Academic
Press.

O’brien, R. (2007). A caution regarding rules of thumb for variance inflation factors. Quality & Quantity, 41(5), 673-
690.

Ricca, F., Di Penta, M. Torchiano, M. Tonella, P. & Ceccato, M. (2007). The role of experience and ability in
comprehension tasks supported by UML stereotypes. 29th International Conference on Software Engineering,
375-384.

Riley, R. D., Lambert, P. C., & Abo-Zaid, G. (2010). Meta-analysis of individual participant data: Rationale, conduct,
and reporting. Bmyj, 340 doi:10.1136/bmj.c221

Runeson, P. (2003). Using students as experiment subjects — an analysis on graduate and freshmen student data.
Proceedings 7™ International Conference on Empirical Assessment & Evaluation in Software Engineering, 95-
102.

Sheppard, S. B., Curtis, B., Milliman, P., & Love, T. (1979). Modern coding practices and programmer performance.
Computer, 12,41-49.

Siegmund, J., Késtner, C., Liebig, J., Apel, S., & Hanenberg, S. (2014). Measuring and modeling programming
experience. Empirical Software Engineering, 19(5), 1299-1334.

Sim, S. E., Ratanotayanon, S., Aiyelokun, O., & Morris, E. (2006). An initial study to develop an empirical test for
software engineering expertise. Institute for Software Research, University of California, Irvine, CA, USA,
Technical Report# UCI-ISR-06-6,

Soloway, E. & Ehrlich, K. (1984). Empirical studies of programming knowledge. /[EEE Transactions on Software
Engineering, SE-10(5), 595-609.

Soloway, E., & Spohrer, J. C. (2013). Studying the novice programmer Psychology Press.

Soloway, E., Bonar, J., & Ehrlich, K. (1983). Cognitive strategies and looping constructs: An empirical study.
Commun.ACM, 26(11), 853-860.

Sonnentag, S. (1995). Excellent software professionals: Experience, work activities, and perception by peers.
Behaviour & Information Technology, 14(5), 289-299.

Sonnentag, S. (1998). Expertise in professional software design: A process study. Journal of Applied Psychology,
83(5), 703-715.

Votta, L. G. (1994). By the way, has anyone studied any real programmers, yet? Sofiware Process Workshop, 1994.
Proceedings., Ninth International, pp. 93-95.

Weiser, J., & Shertz, J. (1984). Programming problem representation in novice and expert programmers.
International Journal of Man-Machine Studies, 19, 391-398.

Weiser, M. (1981). Program slicing. San Diego, California, USA: IEEE Press.

Wiedenbeck, S. (1985). Novice/expert differences in programming skills. International Journal of Man-Machine
Studies, 23(4), 383-390.

Williams, L., Kudrjavets, G., & Nagappan, N. (2009). On the effectiveness of unit test automation at microsoft.
Software Reliability Engineering, 2009. ISSRE '09. 20th International Symposium on, pp. 81-89.

Winship, C., & Mare, R. D. (1984). Regression models with ordinal variables. American Sociological Review, 49(4),
512-525.

Ye, N., & Salvendy, G. (1994). Quantitative and qualitative differences between experts and novices in chunking
computer software knowledge. International Journal of Human-Computer Interaction, 6(1), 105-118.

37

Appendices Click here to view linked References *

APPENDIX A: DESCRIPTION OF THE INDEPENDENT VARIABLES

é Tablel shows the 15 independent variables used in this research. The main aim of this appendix is to list each varia-
3 ble giving a brief description of the variable, its type (nominal, ordinal or dummy) and its respective levels. Section 3
4 details the types and measurement of variables.
5
6 Tablel Independent variables
7
8 Independent variable Description Variable type Levels (metric)
9 CS_DEGREE Education of experimental Dummy 0. Non-computer science
10 subjects 1. Computer science
11 EXPERI- Years of programming Scalar Number of years
12 ENCE_EXPERIMENT PRO | language experience gained
13 GRAM- in academia
14 MING_LANGUAGE_ACAD
15 EMIA YEARS
16 EXPERI- Years of programming Scalar Number of years
17 ENCE_EXPERIMENT PRO | language experience gained
GRAM- in industry
18 MING_LANGUAGE_INDU
19 STRY_YEARS
20 EXPERI- Unit testing experience Ordinal 1. No experience (< 2 years)
21 ENCE_UNIT TESTING LI | measured on a Likert scale 2. Novice (2-5 years)
22 KERT_SCALE (1-4) 3. Intermediate (5-10 years)
23 4. Expert (>10 years)
24 EXPERI- Knowledge of IDE use Dummy 0. No
o5 MENT _IDE_USED DUMM 1. Yes
26 Y
27 EXPERI- Programming language used | Categorical 1. C++
28 MENT PROGRAMMING L | in the experiment 2.JAVA
29 ANGUAGE
OVER- Years of overall program- Scalar Number of years
30 ALL_EXPERIENCE PROG | ming experience gained in
31 RAM- academia
32 MING_ACADEMIA_YEAR
33 S
34 OVER- Years of overall program- Scalar Number of years
35 ALL EXPERIENCE PROG | ming experience gained in
36 RAM- industry
37 MING INDUSTRY YEARS
38 SITE Site at which the experiment | Dummy 0. Academia
39 was run 1. Industry
40 SLICED_ITLD DUMMY Whether or not slicing was Dummy 0. No
41 used in the task 1. Yes
42 TASK ITLD Tasks that subjects had to Categorical 1. MR
solve 2. BSK
43 TDD_USED_DUMMY Knowledge of TDD use Dummy 0. No
44 1. Yes
45 TRAINER Trainer for TDD Dummy 1. Burak Turhan
46 2. Oscar Dieste
47 UNIT _TESTING FRAMEW | Framework used to write Categorical 1. GTEST
48 ORK_LIKERT SCALE unit tests 2. BOOST
49 3. JUNIT
50 UNIT_TESTING FRAMEW | Testing framework recoded Dummy 2. BOOST
51 ORK LIKERT SCALE AD | in order to transform the 3. xUNIT
52 APTED categorical variable into a
53 dummy variable
54
55
56
57
58
59
60
61
62
63
64

[e)}
ul

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

APPENDIX B: DETAILS OF THE EXPERIMENT

B1. SPECIFICATION FOR MARS ROVER API WITH SLICING

Develop an API that moves a rover around a planet. The planet is represented as a grid with x and y coordinates.
The rover is also facing in a direction. The direction can be north (), south (S), west (W) or east (£). The input re-
ceived by the rover is a string representing the commands it needs to execute.

1. The planet

The planet on which the rover moves is represented as a square grid, with size (x, y).
Requirement: Define a planet of size (x, y).

Example: (100,100) creates a planet of size 100x100.

2. Landing
When the rover lands on the planet, it begins its journey at the start of the grid facing north.
Requirement: When the rover lands on the planet its position shall be (0,0) facing north.

(334}

Example: An empty command (i.e., ") to the rover returns its landing status (0,0,N).

3. Turning
The rover turns right or left. It remains in the same cell of the grid. Its direction changes accordingly.

“1”

Requirement: Compute the position of the rover after turning left (command “I””) or right (command “r”

Example: A rover at position (0,0,N) is at position (0,0,E) after executing command “r”. A rover at position
(0,0,N) is at position (0,0,W) after executing command “1”.

4. Moving

The rover moves forward or backward one grid cell in the direction that it is facing. The rover’s direction
does not change.

Requirement: Compute the position of the rover after moving forward (command “f”) or backward (command
“b”) one grid cell.

Example: A rover at position (7,6,N) moves to (7,7,N) after executing a “f” command. A rover at position (5,8,E)
moves to (4,8,E) after executing a “b” command.

5. Moving and turning combined
The rover shall be able to execute arbitrary sequences of “f”, “b”, “I” and “r” commands.
Requirement: Compute the position of the rover after executing a series of commands.

Example: A rover at position (0,0,N) moves to position (2,2,E) after executing “ffrff”.

6. Wrapping
Since the planet is a sphere the rover wraps at the opposite edge once it moves over it.

Requirement: Compute the position of the rover moving over the edges. The rover shall spawn on the opposite
side.

Example: A rover on a planet of size 100x100, which moves backward (command “b”) after landing (remem-
ber that landing always takes place at position (0,0,N)) moves to position (0,99,N).

7. Positioning of obstacles

Obstacles can be positioned on specific cells of the grid.

Requirement: Define the obstacles as a string (x1,y1)(x2,y2)... Place the obstacles on the grid.

Example: “(1,1)(4,5)” defines two obstacles, one at position (1,1) and another at position (4,5). Notice that the

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

planet grid should be greater than or equal to 6x6.

8. Identifying a single obstacle

The rover might encounter (i.e., tries to move into) an obstacle. When it does it should report the obstacle and
continue executing the remaining commands.

Requirement: Compute the position of a rover encountering an obstacle and report the obstacle. The same obsta-
cle should be reported only once.

Example: A rover just landed (position (0,0,N)). There is one obstacle at planet coordinates (2,2). The rover
executes “ffrfff” and reports (1,2,E)(2,2). Notice that the same obstacle is encountered twice but reported only
once.

9. Identifying multiple obstacles

The rover might encounter multiple obstacles. When it does, it should report all of them once and in the order
they were encountered.

Requirement: Compute the position of the rover encountering obstacles, and report the obstacles encountered in
the order they are encountered. The same obstacle shall be reported only once.

Example: A rover just landed (position(0,0,N)). There are two obstacles at planet coordinates (2,2) and (2,1). The
rover executes “ffrfffrflf” and reports (1,1,E)(2,2)(2,1). Notice that the first obstacle is encountered twice but re-
ported only once.

10. A tour around the planet
The rover goes on a tour around the planet encountering several obstacles, and wrapping in both axes.

Requirement: Compute the position of a rover that executes a series of commands that result in moving along
both axes in both directions, encountering several obstacles and wrapping from both edges of the planet.

Example: The rover lands on a 6x6 planet with obstacles at (2,2), (0,5) and (5,0). It executes the command
“ffrfffrbbblllfrfrbbl” and returns (0,0,N)(2,2)(0,5)(5,0).

Congratulations, you are done!

B2. SPECIFICATION FOR MARS ROVER API WITHOUT SLICING

The API manages a rover that moves on a planet (/squared grid) of arbitrary size (x,y). The rover starts the movement
at position (0,0). The direction of the movement can be N (north), S (south), E (east) and W (west). The rover is north
facing at the start.

The rover receives a string of commands: 1 (left), r (right), f (forward) and b (backward). 1 and r change the rover’s
direction counter- and clockwise, respectively, but do not alter its position. f and b move the rover 1 position on the
grid in or away from the direction that it is facing, respectively. The direction in which the rover is facing does not
change. When the rover moves over the edges of the planet, it spawns on the opposite side.

The planet (/grid) may contain obstacles. Obstacles are defined as a list of coordinates “(obslX, obs1Y)(obs2X,
obs2Y)...” . When the rover finds an obstacle during a tour, it skips the current command (i.e., it does not move to
the cell in which the obstacle is located) and continues to execute the remaining commands.

Upon processing the string of commands, the rover returns its position and direction in the format “(posX, posY,
facing)”. If obstacles are found, the output will be“(posX, posY, facing) (obs1X, obslY) (obs2X, obs2Y)...” The
same obstacle shall be reported only once. Obstacles are reported in the order in which they are found.

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

ﬁ (0,2) (1,2) (2,2)

> | D

ﬁ (0,1) (1,1) (2,1)
o) @wo| (o

Example of a rover’s tour on a 3x3 planet in response
to the command “ffrf”. The starting position is (0,0)
facing north. After the 1st f (forward) command, the
rover moves to position (0,1) facing north. Subsequent
commands keep the rover moving. The expected output
is (1,2,E). With two more fs, the rover would spawn
over the right edge to the final position (0,2,E).

(0,2) (1,2) (2,2)

(0,1) (1,1) (2,1)
ficy] o

(0,0 (1,0) (2,0)

Example of a rover’s tour on a 3x3 planet in response to
the command “ffrf”’, with one obstacle in position (0,2).
After the 1st f (forward) command, the rover moves to
position (0,1) facing north. The 2nd f command does
not change the rover’s position, because there is an
obstacle in (0,2). This second f command is thus
skipped. The expected output is (1,1,E)(0,2).

B3. SPECIFICATION FOR BOWLING SCORE KEEPER WITH SLICING

The objective is to develop an application that can calculate the score of a single bowling game using TDD. There is
no graphical user interface. All that you will use in this assignment is the objects and JUnit testing. You will not need
a main method.

The application requirements are divided into a set of user stories, which is as your to-do list. You should be able to
incrementally develop a complete solution without an upfront comprehension of all the game’s rules. For this exer-
cise, don’t read ahead, and handle the requirements one at a time in the stated order. Solve the problem using TDD,
starting with the requirement for the first story. Remember to always lead with a test case, taking hints from the ex-
amples provided. Do not move to the next story until you have done with the last one. A story is done when you are
confident that your program correctly implements the functionality stipulated by the requirement for the story. This
means that all of your test cases for that story and all of the test cases for the previous stories pass. You may need to
tweak your solution as you progress towards more advanced stories.

1. Frame

Each turn of a bowling game is called a frame. 10 pins are arranged in each frame. The goal of the player is to knock
down as many pins as possible in each frame. The player has two chances, or throws, to do so. The value of a throw
is given by the number of pins knocked down in that throw.

Story: As the scorekeeper, I want to be able to record a frame as composed of two throws. The first and second
throws should be distinguishable.

Example: [2, 4] is a frame with two throws, in which two pins were knocked down in the first throw and four pins
were knocked down in the second.

2. Frame Score
An ordinary frame’s score is the sum of its throws.

Story: As the scorekeeper, I want to be able to compute the score of an ordinary frame after a player has rolled both
throws.

Examples: The score of the frame [2, 6] is 8. The score of the frame [0, 9] is 9.
3. Game
A single game consists of 10 frames.

Story: As the scorekeeper, | want to define a game as a sequence of 10 frames.

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

Example: The sequence of frames [1, 5] [3, 6] [7, 2] [3, 6] [4, 4] [5, 3] [3, 31 1[4, 5] [8, 1] [2, 6] represents a game.
You may reuse this game from now on to represent and test different scenarios, modifying only a few frames each
time.

4. Partial Game
When the player rolls a throw, the throw is automatically recorded in the correct frame.

Story: As the scorekeeper, when a player rolls throws, I want the game to keep track of the frames and figure out in
which frame to place the next throw depending on the past throws. You think this is easy. Maybe for now. We’ll see.

Example: If the game currently consists of the frames [1, 5] [3, 6] [7, 2] [3, ?] and the player rolls a throw with a
value of 4, the game becomes [1, 5] [3, 6] [7, 2] [3, 4]. Another roll with a value of 5 transforms the game to [1, 5]
[3,6]1[7,2][3, 4[5, ?].

5. Game Score
The score of a bowling game is the sum of the individual scores of its frames.
Story: As the scorekeeper, I want to know a player’s current game score at all times.

Example: The score of the game [1, 5] [3, 6] [7, 2] [3, 6] [4, 4] [5, 3] [3, 3] [4, 5] [8, 1] [2, 6] is 81. Partial scores are
possible for an incomplete game if the frame scores are known up to the last complete frame. The score of the game
[1,5]1[3,6][7,?7]is 15. The frame [7, ?] is not yet complete.

6. Strike

A frame is called a strike if all 10 pins are knocked down in the first throw. In this case, there is no second throw. A
strike frame can be written as [10, 0]. The score of a strike equals 10 plus the sum of the next two throws of the sub-
sequent frame.

Story: As the scorekeeper, | want to be able to recognize a strike frame, compute its score after the next frame has
been completed, and compute the game score.

Examples: Suppose [10, 0] and [3, 6] are consecutive frames. Then the first frame is a strike and its score equals 10 +
3+6=19. The game [10, 0] [3, 6] [7, 2] [3, 6] [4, 4] [5, 3] [3, 3] [4, 5] [8, 1] [2, 6] has a score of 94. The partial
game [10, 0] [3, 6] has a score of 28.

7. Spare

A frame is called a spare when all 10 pins are knocked down in two throws. The score of a spare frame is 10 plus the
value of the first throw from the subsequent frame.

Story: As the scorekeeper, I want to be able to recognize a spare frame, compute the score of a game containing a
spare frame after the first throw of the next frame has been rolled, and compute the game’s score.

Examples: [1, 9], [4, 6], [7, 3] are all spares. If you have two frames [1, 9] and [3, 6] in a row, the spare frame’s score
is 10 + 3 = 13. The game [1, 9] [3, 6] [7, 2] [3, 6] [4, 4] [5, 3] [3, 3] [4, 5] [8, 1] [2, 6] has a score of 88. The partial
game [1, 9] [3, 6] has a score of 22.

8. Strike and Spare
A strike can be followed by a spare. The strike’s score is not affected when this happens.

Story: As the scorekeeper, I want to make sure that the score of a strike is computed right when it’s followed by a
spare.

Examples: In the sequence [10, 0] [4, 6] [7, 2], a strike is followed by a spare. In this case, the score of the strike is
10 + 4 + 6 = 20, and the score of the spare is4 + 6 + 7 = 17. The game [10, 0] [4, 6] [7, 2] [3, 6] [4, 4] [5, 3] [3, 3] [4,
5118, 1] [2, 6] has a score of 103.

9. Multiple Strikes

Two strikes in a row are possible. You must take care when this happens as you need the values of throws from the
next two frames to compute the score of the first strike..

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

Story: As the scorekeeper, I want to make sure that I can record two consecutive strikes correctly in the game, and
correctly compute the score of the first strike after the next two throws have been rolled.

Examples: In the sequence [10, 0] [10, 0] [7, 2], the score of the first strike is 10 + 10 + 7 = 27. The score of the
second strike is 10 + 7 + 2 =19. The game [10, 0] [10, 0] [7, 2] [3, 6] [4, 4] [5, 3] [3, 3] [4, 5] [8, 1] [2, 6] has a score
of 112. The score of the partial game [10, 0] [10, 0] [7, ?] is 27 (we cannot compute the scores of the last two frames
yet).

10. Multiple Spares

Two spares in a row are possible. The score of the first spare is not affected when this happens.

Story: As the scorekeeper, I want to be able to compute the score of a game with two spares in a row, and the scores
of the first spare after the next spare has been completed.

Example: The game [8, 2] [5, 5][7, 2] [3, 6] [4, 4] [5, 31 [3, 3] [4, 5118, 1] [2, 6] has a score of 98.
11. Spare as the Last Frame

When the last frame in a game is a spare, the player will be given a bonus throw. However, this bonus throw does not
belong to a regular frame. It is only used to calculate the score of the last spare.

Story: As the scorekeeper, I hate it when the last frame is a spare: let the game please figure out that the next roll is a
bonus throw and compute the score of the last frame and the whole game based on the value of that bonus throw.

Example: The last frame in the game [1, 5] [3, 6] [7, 2] [3, 6] [4, 4] [5, 3] [3, 3] [4, 5] [8, 1] [2, 8] is a spare. If the
bonus throw is [7], the last frame has a score of 2 + 8 + 7=17. The game has a score of 90.

12. Strike as the Last Frame

When the last frame of the game is a strike, the player will be given two bonus throws. However, these two bonus
throws do not belong to a regular frame. They are only used to calculate score of the last strike frame.

Story: As the scorekeeper, I hate it even more when the last frame of a game is a strike: let the game please figure out
that the next rolls are bonus throws and compute the score of the last frame and the whole game based on the value of
those bonus throws.

Example: The last frame in the game [1, 5] [3, 6] [7, 2] [3, 6] [4, 4] [5, 3] [3, 3] [4, 5] [8, 1] [10, O] is a strike. If the
bonus throws are [7, 2], the last frame’s score is 10 + 7 +2 = 19. The game score is 92.

13. Bonus is a Strike
No more bonus throws are granted when the last frame in the game is a spare and the bonus throw is a strike.

Story: As the scorekeeper, I hate it most when the last frame is spare and the bonus throw is a strike: please God, let
the game figure this scenario out correctly.

Example: In the game [1, 5] [3, 6] [7, 2] [3, 6] [4, 4] [5, 3] [3, 3] [4, 5] [8, 1] [2, 8], the last frame is a spare. If the
bonus throw is [10], the game score is 93.

14. Best Score
A perfect game consists of all strikes (a total of 12, including the bonus throws), and has a score of 300.

Story: As the scorekeeper, I love it when the game is just a sequence of strikes, including the bonus throws, because I
know that the player then deserves a perfect score of 300.

Example: A perfect game looks like [10, 0] [10, 0] [10, 0] [10, 0] [10, 0] [10, 0] [10, 0] [10, 0] [10, 0] [10, 0] with
bonus throws [10, 10]. Its score is 300.

15. Random Game

Story: As the scorekeeper, I want to make sure that the game [6, 3] [7, 1] [8, 2] [7, 2] [10, 0] [6, 2] [7, 3] [10, O] [8,
0][7,3][10] has a score of 135.

Congratulations, you are done!

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

B4. SPECIFICATION FOR BOWLING SCORE KEEPER WITHOUT SLICING

14| 4 |5| 6 5 0(1] 7 6 2| 46
5 14 | 29 |49 | &0 | &1 | 77 | 97 | 117 | 133

The game consists of 10 frames as shown above. The player has two opportunities in each frame to knock down 10
pins. The score for the frame is the total number of pins knocked down, plus bonuses for strikes and spares.

A spare is when the player knocks down all 10 pins in two tries. The bonus for that frame is the number of pins
knocked down by the next ball rolled. So, the score in frame 3 above is 10 (the total number knocked down), plus a
bonus of 5 (the number of pins knocked down on the next roll.).

A strike is when the player knocks down all 10 pins on his or her first try. The bonus for that frame is the value of the
next two balls rolled.

A player who rolls a spare or strike in the tenth frame is allowed to roll the extra balls to complete the frame. How-
ever, no more than three balls can be rolled in tenth frame.

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

APPENDIX C: INDUSTRY QUESTIONNAIRE

Demographics

Respondent ID* (*) Required
Company*

Location*

Function*

Education

1. Please state your academic degree title(s) (e.g., BS in computer science, MS in management). *

2. Please state any certification(s) that you have received during your professional career (e.g. SEI certification as Personal Soft-
ware Process (PSP) developer, CMMI certification, or ITIL certification as application engineer).

Professional experience
3. Please state the roles that you have performed during your professional career (e.g. developer XX months/years, tester YY
months/years). *
4. Please describe the type of code you currently build (e.g. web interfaces using html+css+javascript; business logic using beans).
5. Please state the programming languages that you have used (during your education as well), and the number of years of experi-
ence in each one.

Programming Language 1
5.1.1 Programming language*
5.1.2 Years (education)*
5.1.3 Years (professional career)*

Programming Language 2
5.2.1 Programming language
5.2.2 Years (education)
5.2.3 Years (professional career)

Programming Language 3
5.3.1 Programming language
5.3.2 Years (education)
5.3.3 Years (professional career)

6. How would you rate your programming experience?*
No experience (only casual usage)

Little experience (<2 years)

Novice (2-<=5 years)

Intermediate (5-<=10 years)

Expert (>10 years)

7. How would you rate your Java experience?*
No experience (only casual usage)
Little experience (<2 years)

Novice (2-<=5 years)

Intermediate (5-<=10 years)

Expert (>10 years)

8. Which development methodologies have you used so far?
(e.g., waterfall, iterative, spiral, agile. If you choose agile, please indicate the type (scrum, tdd, xp, etc.). Include the methodologies
you used in academia as well. State the number of years of experience in each one.)

Methodology 1
8.1.1 Methodology*
8.1.2 Years (education)*
8.1.3 Years (professional career)*

Methodology 2
8.2.1 Methodology
8.2.2 Years (education)
8.2.3 Years (professional career)

Methodology 3
8.3.1 Methodology
8.3.2 Years (education)
8.3.3 Years (professional career)

Testing experience
9. How would you rate your unit testing experience?*

1 e No experience (only casual usage)

2 e Little experience (<2 years)

3 e Novice (2-<=5 years)

4 e Intermediate (5-<=10 years)

5 e Expert (>10 years)

6 10. Do you write automated tests?*

7 e Yes

8 e No

9 10.1. If you answered “yes” above, please give a brief explanation.
10
11 11. Do you currently use a tool for unit testing (for executing, monitoring)?*
12
13 11.1. If you answered “yes” above, please write the names of the tools.
14
15 12. What IDE (Integrated Development Environment) do you currently use?*
16
17 13. Do you have substantial experience of other IDEs? If so, please specify which ones.
18 14. How would you rate your experience with the JUnit testing framework?*
19 e No experience (only casual usage)
20 e Little experience (<2 years)
21 e Novice (2-<=5 years)
22 e Intermediate (5-<=10 years)
23 e Expert (>10 years)
24
25 15. Have you ever used TDD as a development methodology?*
26 e Yes
27 e No
28
29 15.1. If you answered “yes” above, how would you rate your TDD experience?
30 e No experience (only casual usage)
31 e Little experience (<2 years)
32 e Novice (2-<=5 years)
33 e Intermediate (5-<=10 years)
34 e Expert (>10 years)
22 16. Have you ever attended any training on testing or more specifically unit testing? *
37 e Yes
38 © Mo
28 16.1. If you answered “yes” above, please give a brief description of its content.
41 17. Have you ever attended any training on TDD?*
42 e Yes
43 e No
44
45 If you answered “yes” above, please briefly answer the following questions:
46 17.1. What was taught during the training?
47 17.2. How long did the training take (in days or hours if possible)?
48 17.3. When did you take the training?
49 17.4. Did you take the training at your current job?

17.5. Are you still practising TDD? Why?
o0 18. Have you ever been involved in TDD studies in industry?*
gé e Yes
e No

53 18.1. If you answered “yes” above, please share the results you got from the pilot study, and your opinion on its effectiveness.
54 19. Have you ever attended any coding kata?*Required kata = programming exercise
55 e Yes
56 e No
57
58 19.1. If you answered “yes” above, please state when and which katas (name of the programming exercises) you completed.
59
60
61
62
63
64

65

O Joy U WM

e)
VI S e I o)

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

APPENDIX D: ACADEMIC QUESTIONNAIRE

Demographics
Respondent ID* (*) Required
University*
Location*

Education

1. Please state your academic degree title(s), if any (e.g., BS in computer science, MS in management). *

2. Please state the roles that you have performed during your professional career, if any (e.g., developer XX months/years, tester
Y'Y months/years, etc.).*

3. Please state the programming languages that you have used (during your education as well), and the number of years of experi-
ence in each one.

Programming Language 1
3.1.1 Programming language™*:
3.1.2 Years (education)*Required
3.1.3 Years (professional career), if any

Programming Language 2
3.2.1 Programming language
3.2.2 Years (education)
3.2.3 Years (professional career), if any

Programming Language 3
3.3.1 Programming language
3.3.2 Years (education)
3.3.3 Years (professional career), if any

4. How would you rate your programming experience?*
No experience (<2 years)

Novice (2-<=5 years)

Intermediate (5-<=10 years)

Expert (>10 years)

5. Which development methodologies have you used so far? (e.g., waterfall, iterative, spiral, agile. If you choose agile, please state
the type (scrum, tdd, xp, etc.). State the number of years of experience in each one (e.g., waterfall, 1 year of education, 5 years of
professional practice).

Methodology 1
5.1.1 Methodology*
5.1.2 Years (education)*Required
5.1.3 Years (professional career), if any

Methodology 2
5.2.1 Methodology
5.2.2 Years (education)
5.2.3 Years (professional career), if any

Methodology 3
5.3.1 Methodology
5.3.2 Years (education)
5.3.3 Years (professional career), if any

6. How would you rate your unit testing experience?*
No experience (<2 years)

Novice (2-<=5 years)

Intermediate (5-<=10 years)

Expert (>10 years)

7. Have you used a unit testing tool? If you answered yes above, please write the names of the tools.
8. What IDE (Integrated Development Environment) have you used?*
9. How would you rate your Java experience?*

e No experience (<2 years)
e Novice (2-<=5 years)

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

e Intermediate (5-<=10 years)
e Expert (>10 years)

10. How would you rate your JUnit testing framework experience?*
No experience (<2 years)

Novice (2-<=5 years)

Intermediate (5-<=10 years)

Expert (>10 years)

11. Have you ever used TDD as a development methodology?*
e Yes
e No

12. If you answered “yes” above, how would you rate your TDD experience?
e No experience (<2 years)
e Novice (2-<=5 years)
e Intermediate (5-<=10 years)
e Expert (>10 years)

13. Please state the certification(s) you have received during your professional career, if any (e.g., SEI certification as Personal
Software Process (PSP) developer, CMMI certification, or ITIL certification as application engineer.)

14. Have you ever attended any training on testing, or more specifically unit testing? If yes, please give a brief explanation of its
content.

15. Have you ever attended any training on TDD?*Required
e Yes
e No

16. If you answered “yes” above, please briefly answer the following questions:
a) What was taught during the training?

b) How long did the training take (in days or hours if possible)?

¢) When did you take the training?

d) Did you take the training at a company?

17. Have you ever attended any coding kata?*
e Yes

e No

17a. If you answered “yes” above, please state when and which katas (name of the coding task) you completed.

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

APPENDIX E: BREAKDOWN OF EXPERIENCE

E1. PROGRAMMING LANGUAGE EXPERIENCE

A. ACADEMY - TOTAL B. INDUSTRY - TOTAL
Mean =213 Mean =1.7929
. Std. Dev. = 2957 . Std. Dev. = 3.0332
80 N=126 80 N=126
60+ 60+
== ==
3 3
c c
@ @
2 2
2 40 o 4o
w w
20+ 20+
- o
T T) — T — o T T T T
5 10 15 20 2 5 10 15 20

Experience in programming language used in the
experiment acquired in academy

Experience in programming language used in the
experiment acquired in industry

C.

ACADEMY — STUDENTS

D. INDUSTRY — STUDENTS

Frecuencia

[+ =

0

T T T T
2 4 6 8

Experience in programming language used in the
experiment acquired in industry

Mean = 6861
Std. Dev. = 1.26524
N=56

Frequency

40

30

o
1
1

Wlean = 2.21
Std. Dev. = 1.629
N=56

1l

L —
4 8

0 2

Experience in programming language used in the
experiment acquired in academy

E. ACADEMY - PRACTITIONERS

F.

INDUSTRY - PRACTITIONERS

Frequency

30

-

Mean = 2.07
Std. Dev. = 3629
=70

T T i — T
0 5 10 15 20

Experience in programming language used in the
experiment acquired in academy

—
—1
25

Frequency

60

50

=
=
1

w
=}
7

Wlean = 2 6943
Stl. Dev. = 3.67919
N=70

T T T T
0 5 10 15 20

Experience in programming language used in the
experiment acquired in industry

Fig. 1 Breakdown of Programming language experience

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

E2. OVERALL PROGRAMMING LANGUAGE EXPERIENCE

A. ACADEMY - TOTAL

B. INDUSTRY - TOTAL

Frequency

e =

o T T T T

2 4 6 B 10 12 14

Overall experience in programming acquired in industry

Stel. Dev, = 3185
N=54

e Y oo
M = | el ey, =
= S e 25 am o N=124
40 N=126
650
30+ -
=
)
= c
Q O
c 3
: — H
T 2 40
2 20 [re
'S
20+
10+
— o T T —_—T - T
- - - — 10 20 30 40 50
10 15 20 2% " . N T—
Overall experience in programming acquired in industry
Overall experience in programming acquired in
academy
C. ACADEMY-STUDENTS D. INDUSTRY — STUDENTS
tean = 2.39 iean = 569

Stel. Dev, = 3,934
N=56

Frecquency

o T T

S e T T
o 5 10 15 20 25

Overall experience in programming acquired in
academy

E. ACADEMY - PRACTITIONERS

F. INDUSTRY - PRACTITIONERS

30

o
]
1

Frequency

TD_HQHU 10

Overall experience in programming acquired in
academy

Mean =27
Std. Dev, =2.492
=70

Frequency

Mean =7.12
Stl. Dev, = 6,861
=70

|
v T T T T
10 20 30 40 50

Overall experience in programming acquired in industry

Fig. 2 Breakdown of Overall programming language experience

O Joy U WM

DO UGG OTOTOTE D DB BB D DD DNWWWWWWWWWWNNNRNNNNNNN R, R RRRFRR PR,
R WNRFROWOVWO-JONTRWNROW®®JIAOAURWNROWGWOW-JANOREWNRFROWOW®OW-JANTREWNRLOW®O-TI0 N WNR O W

APPENDIX F: COLLINEARITY CONDITIONS

Table2 reports the results of the collinearity analysis for the model with 15 independent variables. The pattern shown
in Table2 suggests that the testing framework (UNIT TESTING FRAMEWORK2 ADAPTED) might be collinear,
as it has values close to the bounds established for the variance inflation factor (VIF=4.943) and a low tolerance
(T=0.202). On the other hand, the collinearity statistics for the other variables are within the expected values (VIF <5
and T > 0.2), which is a sign that they are not collinear.

Table2 Coefficients of the linear regression model with 15 independent variables

Unstandardized Coef- Standardized
ficients Coefficients Collinearity Statistics
Model B Std. Error Beta t Sig. Tolerance VIF
1 (Constant) -64.527 65.070 -.992 324
SITE 36.151 10.468 425 3454 .001 429 2.330
TRAINER 2476 11.380 .028 218 .828 398 2512
CS_TITLE 17.018 9.767 177 1742 .085 628 1.592
UNIT _TESTING_FRAMEWORK_ADAPTED -14.927 21.838 -.123 -.684 496 202 4.943
EXPERI-
ENCE_UNIT TESTING_ FRAMEWORK LIK 8.903 8.841 119 1.007 316 464 2.157
ERT_SCALE
EXPERI-
MENT PROGRAMMING LANGUAGE 23.861 17.329 230 1.377 172 233 4.292
EXPERI-
ENCE_EXPERIMENT_PROGRAMMING_LA 337 1.995 .022 .169 .866 382 2.621
NGUAGE_ACADEMY_YEARS
EXPERI-
ENCE_EXPERIMENT PROGRAMMING LA 1.198 1.978 .086 .606 .546 321 3.119
NGUAGE_INDUSTRY_YEARS
OVER-
ALL EXPERIENCE PROGRAMMING ACA 3.326 1.289 285 2.581 011 .534 1.873
DEMY_YEARS
OVER-
ALL_EXPERIENCE_PROGRAMMING_INDU 959 1.039 135 923 358 304 3292
STRY_YEARS
EXPERI-
ENCE_UNIT TESTING_LIKERT SCALE -9.577 7.411 - 1621 -1.292 199 412 2.426
EXPERIMENT_IDE_USED_DUMMY 16.605 9.187 190 1.807 .074 .590 1.694
TDD_USED_DUMMY -1.873 10.723 -.017 -175 .862 .650 1.540
TASK_ITLD 8.511 13.514 .094 .630 .530 .290 3.449
SLICED ITLD DUMMY 29.735 13.477 330 2.206 .030 .292 3.430

Dependent Variable: QLTY

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

Table 3 shows the collinearity diagnostics of the model specified inTable2. Note that component 16 has a very high
condition index (CI =86.918 > 30), which suggests that the level of collinearity is high. Comparing the proportion of
variance explained for each of the model explanatory variables, we find that the
UNIT_TESTING_ FRAMEWORK ADAPTED and EXPERIMENT PROGRAMMING LANGUAGE variables
have an extremely high proportion of variance explained with values of 0.90 and 0.46, respectively. One way of solv-
ing the collinearity problem 1is to remove the most collinear wvariable, which, in this case, is
UNIT _TESTING FRAMEWORK ADAPTED.

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

Table 3 Collinearity diagnostics (1)

Collinearity Diagnostics

Variance Proportions
EXPERI-
EXPERI- ENCE_EXPE
ENCE_UNIT_| EXPERI- | RIMENT_PR
s g UNIT_TESTI TEST- MENT_PRO OGRAM-
_ 2 <_>\s NG_FRAME | ING_FRAME GRAM- MING_LANG
%’ g §o Condition WORK_ADA | WORK_LIKE | MING_LANG | UAGE_ACAD
= A4] Index (Constant) SITE TRAINER CS_TITLE PTED RT_SCALE UAGE EMY_YEARS
1 11.113 1.000 .00 .00 .00 .00 .00 .00 .00 .00
2 1.349 2.871 .00 .00 .00 .00 .00 .00 .00 .00
3 .905 3.504 .00 .00 .00 .00 .00 .00 .00 .00
4 .789 3.754 .00 .00 .00 .00 .00 .00 .00 17
5 .534 4.563 .00 .00 .00 .02 .00 .00 .00 .03
6 .360 5.555 .00 .01 .00 .05 .00 .00 .00 .01
7 .293 6.161 .00 .00 .00 .06 .00 .00 .00 .02
8 213 7.224 .00 .00 .00 .33 .00 .02 .00 .00
9 .164 8.233 .00 .00 .01 .05 .00 .08 .00 .26
10 .084 11.497 .00 .00 .01 .09 .00 .08 .00 .06
11 .075 12.211 .00 .15 .00 .02 .00 42 .01 .08
12 .051 14.691 .00 .00 .18 .22 .01 .09 .08 .00
13 .037 17.346 .00 32 .24 11 .00 .20 .01 .18
14 .025 21.071 .00 14 .10 .00 .00 .04 .01 .09
15 .007 38.679 .14 .29 .07 .04 .09 .01 42 .03
16 .001 86.918 .86 .09 .38 .00 .90 .04 46 .05
Variance Proportions
OVER-
EXPERI- OVER- ALL_EXPERIE
< ENCE_EXPERIME | ALL_EXPERIE | NCE_PROGR EXPERI-

- ‘2 | NT_PROGRAMMI | NCE_PROGRA AM- ENCE_UNIT_T EXPERI- SLI-
3 “E’ NG_LANGUAGE_| | MMING_ACA | MING_INDU | ESTING_LIKER | MENT_IDE_USE | TDD_USED_D CED_ITLD_DUM

= [a NDUSTRY_YEARS | DEMY_YEARS | STRY_YEARS T_SCALE D_DUMMY UMMy TASK_ITLD MY
1 1 .00 .00 .00 .00 .00 .00 .00 .00
2 .05 .01 .03 .00 .01 .04 .00 .02
3 .04 .02 .02 .00 .00 .30 .00 .03
4 .00 .03 .02 .00 .00 .04 .00 .01
5 .00 .00 .01 .00 .03 17 .00 .19
6 .22 .06 .04 .00 .05 .05 .00 .02
7 .00 .20 .00 .00 .43 .04 .00 .00
8 .01 .25 .04 .04 .00 .06 .00 .00
9 .00 .15 .23 .06 .05 .10 .00 .00
10 .27 .01 13 40 .10 .00 .05 .05
11 .18 .00 .26 .00 .06 .03 .01 .01
12 .04 .04 .04 .00 .02 .01 .00 .01
13 .07 .20 .04 22 .20 .06 .00 .01
14 .06 .01 11 18 .05 .01 .80 .54
15 .01 .00 .02 .07 .01 .00 11 .10
16 .04 .01 .02 .01 .00 .07 .01 .00

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

Model 2

Table 4 reports the collinearity diagnostics of model 2 with 14 variables, which is composed of all the variables of the
original model, except the UNIT TESTING FRAMEWORK ADAPTED variable that was eliminated on the
grounds of collinearity.

Note that dimension 15 still has a very high condition index (CI=43 > 30), which implies that there is a problem of
collinearity. There are three closely correlated variables: EXPERIMENT PROGRAMMING LANGUAGE, SITE
and TRAINER. In order to deal with the collinearity problem, we have opted to eliminate the variable with the high-
est proportion of variance explained, which in this case is EXPERIMENT PROGRAMMING LANGUAGE with a
proportion of variance explained of 0.40.

Table 4 Collinearity diagnostics (2) with 14 variables

Collinearity Diagnostics

Variance Proportions
EXPERI- EXPERI-
ENCE_EXP |ENCE_EXP
ERI- ERI-
EXPERI- MENT_PRO |MENT_PRO
= ENCE_UNIT | EXPERI- GRAM- GRAM-
-2 _TESTING_ |MENT_PRO [MING_LAN |MING_LAN
T 8 FRAME- GRAM- |GUAGE AC |GUAGE IN
EO £ Eigenva- | Condition WORK LIK [MING LAN ADE- DUSTRY Y
A lue Index (Constant) SITE TRAINER | CS TITLE [ERT SCALE | GUAGE |MY YEARS EARS
1 1 10.153 1.000 .00 .00 .00 .00 .00 .00 .00 .00
2 1.346 2.747 .00 .00 .00 .00 .00 .00 .00 .05
3 905 3.350 .00 .00 .00 .00 .00 .00 .01 .04
4 786 3.594 .00 .00 .00 .00 .00 .00 18 .00
5 523 4.404 .00 .00 .00 .03 .00 .00 .04 .00
6 353 5.366 .00 .02 .00 .05 .00 .00 .01 .23
7 293 5.889 .00 .00 .00 .06 .00 .00 .02 .00
8 209 6.964 .00 .00 .00 36 .02 .01 .00 .02
9 164 7.872 .00 .00 .02 .05 .08 .00 27 .00
10 .084 11.011 .00 .00 .02 .08 .09 .00 .07 .26
11 .075 11.672 .00 15 .00 .01 45 .02 .08 18
12 .043 15.367 .00 .02 37 12 .04 .36 .01 .01
13 .036 16.728 .00 .29 .18 .18 27 .16 .20 .09
14 .025 20.150 .00 .14 12 .00 .04 .05 .10 .06
15 .005 43.552 1.00 .38 27 .07 .00 40 .01 .04
Variance Proportions
o OVER- OVER-
-2| ALL_EXPERIENC | ALL_EXPERIEN EXPERI-
g 5| E_PROGRAMMI | CE_ PROGRAM | ENCE UNIT_T EXPERI-
§ = NG_ACADEMY_ | MING_INDUST | ESTING LIKE | MENT_IDE USE | TDD _USED D SLI-
A YEARS RY YEARS RT SCALE D DUMMY UMMY TASK ITLD | CED ITLD DUMMY
1 .00 .00 .00 .00 .00 .00 .00
2 .01 .03 .00 .01 .05 .00 .02
3 .02 .02 .00 .00 32 .00 .03
4 .03 .02 .00 .00 .05 .00 .01
5 .00 .01 .00 .03 17 .00 18
6 .06 .03 .00 .04 .07 .00 .03
7 .20 .00 .00 43 .05 .00 .00
8 27 .05 .04 .00 .06 .00 .00
9 15 24 .07 .05 11 .00 .00
10 .02 12 40 .09 .00 .06 .06
11 .00 26 .00 .06 .03 .01 .01
12 .08 .02 .01 .00 .04 .00 .01
13 .16 .06 22 21 .04 .00 .01
14 .01 11 .18 .05 .01 .80 .54
15 .00 .04 .08 .02 .00 .13 .09

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

Model 3

Table 5 reports the collinearity diagnostics of model 3 with 13 variables, which is composed of all the variables of
model 2 except the EXPERIMENT PROGRAMMING LANGUAGE variable.

Note that dimension 14 still has a condition index greater than 30 (CI=33.67 > 30), which suggests that there is a
problem of collinearity. There are three closely correlated variables: SITE, and TRAINER and CS DEGREE. Ac-
cording to the non-collinearity condition, we should eliminate the variable with the highest proportion of variance
explained. Bearing in mind the experimental data type, we know that SITE (which refers to whether the experiment
was conducted in academia or industry) is closely related to TRAINER. Therefore, we will eliminate the TRAINER
variable, as one of the trainers mostly trained subjects in industry and the other trained subjects in academia, and kept
SITE, which is a more interesting variable for this research.

Table 5 Collinearity diagnostics (3) with 13 variables

Variance Proportions
EXPERI- EXPERI-
ENCE_EXPER | ENCE_EXPER
= EXPERI- IMENT_PRO | IMENT_PROG
-2 ENCE_UNIT_T GRAM- RAM-
3 5 ESTING_FRAM [MING_LANG | MING_LANG
S £ Eigenva- Condition EWORK LIKE | UAGE ACAD | UAGE INDUS
= A lue Index (Constant) SITE2 | TRAINER | CS TITLE RT _SCALE EMY _YEARS | TRY _YEARS
1 1 9.237 1.000 .00 .00 .00 .00 .00 .00 .00
2 1.337 2.629 .00 .00 .00 .00 .00 .00 .05
3 903 3.199 .00 .00 .00 .00 .00 .01 .04
4 778 3.445 .00 .00 .00 .00 .00 18 .00
5 510 4.254 .00 .00 .00 .03 .00 .05 .01
6 350 5.140 .00 .02 .00 .05 .00 .01 23
7 292 5.620 .00 .00 .00 .06 .00 .03 .00
8 202 6.755 .00 .00 .00 45 .01 .00 .03
9 .163 7.520 .00 .00 .02 .03 .09 29 .00
10 .083 10.534 .00 .00 .03 .05 .06 .08 29
11 .072 11.321 .00 .16 .00 .00 .59 .09 18
12 .038 15.558 .00 26 .54 .02 11 .19 .04
13 .026 18.895 .00 23 .16 .04 .10 .06 .03
14 .008 33.679 .99 32 24 .26 .02 .01 A1
Variance Proportions
o OVER- OVER-
-2| ALL_EXPERIENC | ALL_EXPERIEN EXPERI-
3 5| E_PROGRAMMI | CE_PROGRAM | ENCE_UNIT_T EXPERI-
<] = NG_ACADEMY_ | MING_INDUST | ESTING_LIKE | MENT_IDE_USE | TDD_USED_D SLI-
= A YEARS RY YEARS RT SCALE D DUMMY UMMY TASK ITLD | CED ITLD DUMMY
.00 .00 .00 .00 .00 .00 .00
2 .01 .02 .00 .01 .05 .00 .02
3 .02 .02 .00 .00 32 .00 .03
4 .03 .02 .00 .00 .07 .00 .01
5 .00 .02 .00 .04 15 .00 .18
6 .05 .03 .00 .03 .08 .00 .03
7 .20 .00 .00 44 .05 .00 .00
8 28 .04 .03 .00 .05 .00 .00
9 13 25 .07 .05 A1 .00 .00
10 .02 .14 40 .10 .00 .07 .07
11 .00 27 .02 .06 .03 .00 .00
12 24 .02 .19 15 .09 .00 .01
13 .01 .06 21 .01 .01 .70 49
14 .01 .09 .06 .09 .00 22 .14

Model 4

Table 6 shows the collinearity diagnostics of model 4 with 12 variables, which is composed of all the variables of
model 3 except the TRAINER variable. Model 4 is the model that we finally used in this research. Note that this
model meets the collinearity conditions: a) the condition index of dimension 13 (CI =29) is less than 30 and b) the

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

proportions of variance explained are within the established bounds (less than 0.5).

Table 6 Collinearity diagnostics (4) with 12 variables

Variance Proportions
EXPERI-
EXPERI- ENCE_EXPERI EXPERI-
= ENCE_UNIT [MENT_PROGR | ENCE_EXPERI
-2 _TESTING_F AM- MENT_PROGRA

) 5 RAME- MING_LANGU | MMING_LANG

] £ WORK_LIKE | AGE_ACADEM | UAGE_INDUST

= A Eigenvalue | Condition Index (Constant) SITE CS TITLE RT SCALE Y YEARS RY YEARS
1 8.373 1.000 .00 .00 .00 .00 .00 .00
2 1.288 2.550 .00 .00 .00 .00 .00 .05
3 902 3.047 .00 .00 .00 .00 .01 .04
4 769 3.299 .00 .00 .00 .00 .20 .00
5 498 4.099 .00 .00 .04 .00 .06 .01
6 337 4.988 .00 .03 .04 .00 .01 25
7 292 5.356 .00 .00 .06 .00 .03 .01
8 202 6.433 .00 .00 A5 .02 .00 .03
9 150 7.480 .00 .01 .03 .09 A5 .02
10 .079 10.272 .00 .02 .05 .03 .03 27
11 .072 10.799 .00 13 .00 .64 11 15
12 .028 17.306 .01 48 .09 .19 .00 .00
13 .010 29.003 98 .33 23 .03 .09 .18

Variance Proportions
= OVER- OVER-
-2| ALL_EXPERIENC | ALL_EXPERIEN EXPERI-

3 S| E_PROGRAMMI | CE PROGRAM | ENCE UNIT T EXPERI-

S £ NG_ACADEMY_ | MING_INDUST | ESTING_LIKE | MENT_IDE USE | TDD_USED_D SLI-

= A YEARS RY_YEARS RT _SCALE D DUMMY UMMY TASK ITLD | CED ITLD DUMMY
1 .00 .00 .00 .00 .00 .00 .00
2 .02 .02 .00 .01 .05 .00 .03
3 .02 .02 .00 .00 35 .00 .03
4 .03 .02 .00 .00 .07 .00 .02
5 .00 .03 .00 .06 .16 .00 15
6 .07 .02 .01 .01 12 .00 .04
7 21 .00 .00 46 .07 .00 .00
8 31 .05 .04 .00 .06 .00 .00
9 23 .30 .05 .09 .07 .00 .00
10 .00 12 46 .06 .01 .09 .08
11 .00 25 .06 .06 .04 .00 .00
12 .03 .02 33 .01 .00 49 45
13 .08 .14 .05 22 .01 41 .19

APPENDIX G: MULTIPLE LINEAR REGRESSION — ALTERNATIVE MODEL

é G1. QuALITY

3

4 Table 7 shows the results of the multiple regression model with respect to the influence of External Quality. Note that

5 experience is measured on a Likert scale in this case.

6

7 Table 7 Results of the MRL - Quality

8

9 Coefficients”
10 Unstandardized Coef- Standardized
11 ficients Cocefficients Collinearity Statistics
12 Model B Std. Error Beta t Sig. Tolerance VIF

1 (Constant) -52.740 27.988 -1.884 .062
13 SITE 32.095 9.704 377 3.308 .001 .520 1.922
14 CS_TITLE 24.603 9.323 254 2.639 010 727 1375
15 EXPERI-
16 ENCE_UNIT _TESTING_FRAMEWOR 11.087 8.998 147 1.232 221 473 2.115
17 K_LIKERT SCALE
18 EXPERI-
19 ENCE_EXPERIMENT PROGRAMMI 3.434 5.791 .069 593 554 505 1.980
20 NG_LANGUAGE_LIKERT SCALE
21 OVER-
o ALL EXPERIENCE_PROGRAMMIN 2.344 5.380 046 436 664 618 1.618
G_LIKERT SCALE
23 EXPERI-
24 ENCE_UNIT TESTING_LIKERT SC -11.366 7.270 -.191 -1.563 121 451 2.216
25 ALE
26 EXPERIMENT IDE USED DUMMY 20.240 8.448 231 2.396 .018 728 1.374
27 TDD _USED DUMMY 2.620 10.077 .024 260 .795 176 1.288
28 TASK ITLD 5.744 13.467 .063 427 .671 .308 3.252
29 SLICED ITLD DUMMY 36.935 13.617 406 2.712 .008 301 3.324
30 a. Dependent Variable: QLTY
31
32
33 G2. PRODUCTIVITY
34
35 Table 8 shows the results of the multiple regression model with respect to the influence of Productivity. Note that
36 experience is measured on a Likert scale in this case.
37 Table 8 - MRL results — Productivity
38
39 Coefficients®
40 Unstandardized Coef- Standardized
ficients Coefficients Collinearity Statistics
j]2' Model B Std. Error Beta t Sig. Tolerance VIF
1 (Constant) -43.041 24.194 -1.779 .078
43 SITE 14.541 8.388 .190 1.734 .086 520 1.922
44 CS TITLE 19.392 8.059 223 2.406 018 727 1375
45 EXPERI-
46 ENCE_UNIT TESTING FRAMEWOR | 11.869 7.778 175 1.526 130 473 2.115
47 K_LIKERT SCALE
48 EXPERI-
49 ENCE_EXPERIMENT PROGRAMMI -161 5.006 -.004 -.032 974 505 1.980
50 NG_LANGUAGE_LIKERT SCALE
51 OVER-
ALL EXPERIENCE_PROGRAMMIN 1.614 4.651 035 347 729 618 1.618

52 G LIKERT SCALE
53 EXPERI-
54 ENCE UNIT TESTING LIKERT SC -6.628 6.285 -.124 -1.055 294 451 2.216
55 ALE
56 EXPERIMENT IDE USED DUMMY 19.122 7.303 243 2.619 .010 728 1.374
57 TDD _USED DUMMY -4.760 8.711 -.049 -.546 .586 176 1.288
58 TASK ITLD 11.285 11.642 138 969 335 .308 3.252
59 SLICED ITLD DUMMY 31.924 11.771 391 2.712 .008 .301 3.324
60 a. Dependent Variable: PROD
61
62
63
64

65

O Joy U WM

BB D WWWWWWWWWwWwNhNDNDNNDNDNdNDNdNNRERPRPRPRRERRRERRE
NP OWOWO-JOUdWNEFOWOJIUDdWNDNEFEOWOJoU bdWwNDE O

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

APPENDIX H: RESIDUAL ANALYSIS BY EXPERIMENT

H1. QUALITY

1004

501

Unstandardized Residual QLTY

-50

-100

Experiment code

Fig. 3 Residual by Experiment — QLTY

Table 9 Effect of the experiment on Quality

Tests of Between-Subjects Effects

Dependent Variable: Unstandardized Residual QLTY

Type 111 Sum Partial Eta Noncent. Pa- Observed Po-
Source of Squares df Mean Square F Sig. Squared rameter wer’
Corrected Model 7137.509* 9 793.057 .652 750 .053 5.866 .305
Intercept 370.491 1 370.491 304 .582 .003 304 .085
EXP_CODE 7137.509 9 793.057 .652 750 .053 5.866 .305
Error 127758.601 105 1216.749
Total 134896.110 115
Corrected Total 134896.110 114

a. R Squared = .053 (Adjusted R Squared = -.028)

b. Computed using alpha = .05

The results reported in Table 10 show that the model residuals plotted against the EXPERIMENT CODE variable
are significant (p-value = 0.006 < 0.05), which means that the variances are not homogeneous.

Table 10 Levene test for QLTY

Levene's Test of Equality of Error Variances*
Dependent Variable: Unstandardized Residual QLTY

F

dfl

df2

Sig.

2.798

9

105

.006

Tests the null hypothesis that the error variance of the de-
pendent variable is equal across groups.
a. Design: Intercept + EXP_CODE

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
G WNhHFHROoOWwWOJdJOUbDdWNREFOOWOJIOUDd WP OOOJOOUNPd WNREPOWOWOJoOYYOUd WDNE OWOJoYUdWwNEFE O

H2. PRODUCTIVITY

100

S04

Unstandardized Residual PROD

-509

22
o
44
23
9 o
33
o
- ? H
57
Q
-100 T T T T T T T T T
1 2 3 4 3 [7 8 g 10

Experiment code

Fig. 4 Residual by Experiment — PROD

Table 11 Effect of the experiment on PRODUCTIVITY

Tests of Between-Subjects Effects

Dependent Variable: Unstandardized Residual PROD

Type 1II Sum Partial Eta Noncent. Pa- Observed Po-
Source of Squares df Mean Square F Sig. Squared rameter wer®
Corrected Model 9282.965* 9 1031.441 1.235 282 .096 11.115 578
Intercept 88.286 1 88.286 .106 746 .001 .106 .062
EXP_CODE 9282.965 9 1031.441 1.235 282 .096 11.115 578
Error 87693.492 105 835.176
Total 96976.457 115
Corrected Total 96976.457 114

a. R Squared = .096 (Adjusted R Squared = .018)

b. Computed using alpha = .05

The results reported in Table 12show that the model residuals plotted against the EXPERIMENT CODE variable are
not significant (p-value = 0.155 >0.05), which suggests that the residual variances are homogeneous.

Table 12 Levene test for PROD

Levene's Test of Equality of Error Variances®*
Dependent Variable: Unstandardized Residual PROD

F dfl df2

Sig.

1.507 9 105

155

Tests the null hypothesis that the error variance of the de-

pendent variable is equal across groups.
a. Design: Intercept + EXP_CODE

APPENDIX I: SPSS SCRIPTS

; I.1. FILTER
3
4 USE ALL.
5 COMPUTE filter $=(EXP CODE ~= 11 and (TASK ITLD = 1 or TASK ITLD = 2)).
6 VARIABLE LABELS filter $ 'EXP CODE ~= 11 and (TASK ITLD = 1 or TASK ITLD = 2)
7 (FILTER) '.
8 VALUE LABELS filter $ 0 'Not Selected' 1 'Selected'.
9 FORMATS filter $ (£1.0).
10 FILTER BY filter $.
11 EXECUTE.
12
13 1.2. ORIGINAL MLR MODEL
14
15 REGRESSION
16 /MISSING LISTWISE
17 /STATISTICS COEFF OUTS CI(95) R ANOVA COLLIN TOL
18 /CRITERIA=PIN(.05) POUT(.10)
19 /NOORIGIN
/DEPENDENT QLTY ITLD
20 /METHOD=ENTER SITE TRAINER CS_TITLE
21 UNIT TESTING FRAMEWORK2 ADAPTED
22 EXPERIENCE UNIT TESTING FRAMEWORK LIKERT SCALE
23 EXPERIMENT PROGRAMMING LANGUAGE
24 EXPERIENCE EXPERIMENT PROGRAMMING LANGUAGE ACADEMY YEARS
25 EXPERIENCE EXPERIMENT PROGRAMMING LANGUAGE INDUSTRY YEARS
26 OVERALL EXPERIENCE PROGRAMMING ACADEMY YEARS
27 OVERALL EXPERIENCE PROGRAMMING INDUSTRY YEARS
o8 EXPERIENCE UNIT TESTING LIKERT SCALE
EXPERIMENT IDE USED DUMMY
29 TDD_USED_DUMMY
30 TASK_ITLD
31 SLICED ITLD DUMMY
32 /SCATTERPLOT= (*ZPRED , *ZRESID)
33 /RESIDUALS DURBIN HISTOGRAM (ZRESID) NORMPROB (ZRESID)
34 /SAVE RESID ZRESID.
35
§ S 1.3. MLR RESULTS FOR QLTY
;g REGRESSION
40 /MISSING LISTWISE
41 /STATISTICS COEFF OUTS CI(95) R ANOVA COLLIN TOL
4 /CRITERIA=PIN(.05) POUT(.10)
43 /NOORIGIN
44 /DEPENDENT QLTY ITLD
45 /METHOD=ENTER SITE CS TITLE
46 EXPERIENCE UNIT TESTING FRAMEWORK LIKERT SCALE
47 EXPERIENCE EXPERIMENT PROGRAMMING LANGUAGE ACADEMY YEARS
48 EXPERIENCE EXPERIMENT PROGRAMMING LANGUAGE INDUSTRY YEARS
OVERALL EXPERIENCE PROGRAMMING ACADEMY YEARS
49 OVERALL EXPERIENCE PROGRAMMING INDUSTRY YEARS
50 EXPERIENCE UNIT TESTING LIKERT SCALE
51 EXPERIMENT IDE USED DUMMY
52 TDD_USED_DUMMY
53 TASK_ITLD
54 SLICED ITLD DUMMY
55 /SCATTERPLOT= (*ZPRED , *ZRESID)
56 /RESIDUALS DURBIN HISTOGRAM (ZRESID) NORMPROB (ZRESID)
57 /SAVE RESID ZRESID.
58
59 I.4. MLR RESULTS FOR PROD
60
6l
62
63
64

65

O Joy U WM

PR R RR R
Lo W R O

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS CI(95) R ANOVA COLLIN TOL
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT PROD ITLD
/METHOD=ENTER SITE CS TITLE
EXPERIENCE UNIT TESTING FRAMEWORK LIKERT SCALE
EXPERIENCE EXPERIMENT PROGRAMMING LANGUAGE ACADEMY YEARS
EXPERIENCE EXPERIMENT PROGRAMMING LANGUAGE INDUSTRY YEARS
OVERALL EXPERIENCE PROGRAMMING ACADEMY YEARS
OVERALL EXPERIENCE PROGRAMMING INDUSTRY YEARS
EXPERIENCE UNIT TESTING LIKERT SCALE
EXPERIMENT IDE USED DUMMY
TDD USED DUMMY
TASK_ITLD
SLICED ITLD DUMMY
/SCATTERPLOT= (*ZPRED , *ZRESID)
/RESIDUALS DURBIN HISTOGRAM (ZRESID) NORMPROB (ZRESID)
/SAVE RESID ZRESID.

I.5. DECISION TREES FOR THE QLTY

TREE QLTY ITLD [s] BY
SITE [n]
CS_TITLE [n]
EXPERIENCE UNIT TESTING FRAMEWORK LIKERT SCALE [o]
EXPERIENCE EXPERIMENT PROGRAMMING LANGUAGE ACADEMY YEARS [s]
EXPERIENCE EXPERIMENT PROGRAMMING LANGUAGE INDUSTRY YEARS [s]
OVERALL EXPERIENCE PROGRAMMING ACADEMY YEARS [s]
OVERALL EXPERIENCE PROGRAMMING INDUSTRY YEARS [s]
EXPERIENCE UNIT TESTING LIKERT SCALE [o]
EXPERIMENT IDE USED DUMMY [o] TDD USED DUMMY [o]
TASK_ITLD [n]
SLICED ITLD DUMMY [o]
/TREE DISPLAY=TOPDOWN NODES=STATISTICS BRANCHSTATISTICS=YES NODEDEFS=YES SCALE=AUTO
/PRINT MODELSUMMARY IMPORTANCE SURROGATES RISK TREETABLE
/GAIN SUMMARYTABLE=YES TYPE=[NODE] SORT=DESCENDING CUMULATIVE=NO
/METHOD TYPE=CRT MAXSURROGATES=AUTO PRUNE=NONE
/GROWTHLIMIT MAXDEPTH=AUTO MINPARENTSIZE=12 MINCHILDSIZE=6
/VALIDATION TYPE=NONE OUTPUT=BOTHSAMPLES
/CRT MINIMPROVEMENT=0.0001
/MISSING NOMINALMISSING=MISSING.

1.6. DECISION TREES FOR THE PROD

TREE PROD ITLD [s] BY
SITE [n]
CS_TITLE [n]
EXPERIENCE UNIT TESTING FRAMEWORK LIKERT SCALE [o]
EXPERTENCE_EXPERTMENT PROGRAMMING LANGUAGE ACADEMY YEARS [s]
EXPERIENCE_EXPERIMENT PROGRAMMING LANGUAGE INDUSTRY YEARS [s]
OVERALI, EXPERTENCE PROGRAMMING ACADEMY YEARS [s]
OVERALL_EXPERIENCE PROGRAMMING INDUSTRY YEARS [s]
EXPERTENCE UNIT TESTING LIKERT SCALE [o] EXPERIMENT IDE USED DUMMY [o]
TDD_USED_DUMMY [o]
TASK_ITLD [n]
SLICED ITLD DUMMY [o]
/TREE DISPLAY=TOPDOWN NODES=BOTH BRANCHSTATISTICS=YES NODEDEFS=YES SCALE=AUTO
/PRINT MODELSUMMARY IMPORTANCE SURROGATES RISK TREETABLE
/GAIN SUMMARYTABLE=YES TYPE=[NODE] SORT=DESCENDING CUMULATIVE=NO
/PLOT IMPORTANCE MEAN INCREMENT=10
/METHOD TYPE=CRT MAXSURROGATES=AUTO PRUNE=NONE
/GROWTHLIMIT MAXDEPTH=AUTO MINPARENTSIZE=12 MINCHILDSIZE=6
/VALIDATION TYPE=NONE OUTPUT=BOTHSAMPLES
/CRT MINIMPROVEMENT=0.0001
/MISSING NOMINALMISSING=MISSING.

O Joy U WM

OO OO OO U U OO OOl DD DDDDADEDDDWWWWWWWWWWNhNDNNDNDNDNMdNMdDNNSNRERRRERERRRRRRE
GO WNRPFPODWOWOJOOUDd WNEFEFOWOW-TOOUP WNRPFPOWO®JIOHUDWNREPRODOWOJOUd WNE OWOWJO U D WNDEFE O W

APPENDIX J: DECISION TREES CART (CRT)

J.1.QLTY

Fig. 5 shows the decision tree for the QLTY response variable with different number of cases for the parent

node (N) and the child node (n).

N=20,
n=20

Mean
Std. Dev.

QLTY_ITLD

42.181

=]
SLICED_ITLD_DUMMY
Improvement=214.210

N=10,
n=10

Predicted 48530

c=|No > No

Node 1 Node 2
Mean 48.530 Mean 79.640
Std. Dev. 43.801 Std. Dev. 28.565
n a3 n 41
% 66.9 % 33.1

Predicted 72.640

<=06 > 06

=]
) DUMMY
\mprwemei\[214210

SLICED_ITLD

e 1

48530
43,801
83

% 66.9
Predicted 48,530

1 3

Overall experience in
programming acquired in

Overall experience in
programming acquired in

industry academy
Improvement=153.204 Improvement=53.982

Predicted

|
I Node 3
Mean
[| td. Dev.

Node 4
Mean 56.043
Std. Dev. 42.451
n

3
Mean §9.119
37.440 stm Dev. 19444

19.359
37.074

zz 6
Pred\ned 89.118

% 53.2 % 10.5
Predicted 56.043 Predicted 59.225

..

Experience in programming
language used in the
experiment acquired in
academy
Improsementg3 621

137
19.359

Mean 44,947
Std. Dev. 42485
n 37

% 298
Predicted 44.947

N=5,

N=10, —

Overall experience in
programeming acauired in

industry
Improvement- 153 204

Overall exparience in
programming acauired in

Imorovemert 63982

N=12,

5 17 * 52
Predicted 19,359 Predicted 56.043

Experience in programmi
language used in the
experiment acquired in

acaemy.
improvemer - 83,621

P E—

<18 >1s
1

Overall experience in
programening acauired in

industry
improvement- 151204

>1s <= 06 e <= 28 >25
1 |

auv.mo

K
79640
29565

Owerall experience in
programming acauired in

<= 08 >b6 <= 25
1 L 1 | 1
Wode 3 Wode 4 Wode § Node & Node 3
Mean 19359 Mean 6041 59225 Mean 89119 Mean 19353
std.Dev. 37074 59,00y, 42451 37440 S.ev. 19444 %aow. 3707

26 H nz
Predicted 89,119 Predicted 19359

"
Mean 89319
19.444

% 26
Predicted 89,119

=
Experience in programming

1
Node 7 Node §
Mean 44947 | |wean 70201
Std.Dev. 42485 | |%d.Dev. 38631
" n 9

% 58 * 14
Predicied 44947 | | Presictes 70201

Have a degree in C5
Improvement=29.456

[
Computersience N computer sience

[=]

Experience in pr
language used in the
experiment acauired in

scade scade
Improvermen= 14648 Improvemeni=14648
I :
>02 xs s b2 >02
| i 5 |
Tede 10 28 = =3
Mesn 93769 Mean Mean 70201
Do, 6735 4. Dev. Py swon. 388
" 2

% 189
Presicted 93769

2.
Prediaes 44507

Presicres 70301

|

| £l

Excerence in orogrammag
language used in the
experiment acguires in indust
i g ~ =0.805 id

I
<= 0750 >0750

ode 11
Mean 74730
9. Dev. 37.39%
n 23

% i85
Predicted 74730

Node 13 Wode 14
Mean 91483 | |Mean 95847
%0w. 740 | |SeDev. 8585

* s *
Predicted 91483 | | Precicted 95,847

L Jl

T =
Have 3 degree in C3
Improvement=29.456

language used
impeovement -
I

s ity nisecis < o‘m\ >0 ‘no
m 1 'oat 7] Node 13 ode 14
Mean 74730 | |Mean 52841 Mean 91483 | |Mean 95847
Sa0e. 37306 | |N6.Dev. 41805 S0 740 | |SeDev. 8585

H " a ! n

% 5 s
Predicted 91483 | | Presicted 95,847

a1

% 185 % s
Prediced 74730 | | Preditea 52841

Fig. S CART decision tree for QLTY

O Joy U WM

OO OO U U OO OrTOrdd BB BB DSEDDDNWWWWWWWWWWNDNNDNDNDNDNDMNNDMNNNMNNNMNNRERRRRRRERRERE
GO WNRPFPODWOWOJOOUDd WNEFEFOWOW-TOOUP WNRPFPOWO®JIOHUDWNREPRODOWOJOUd WNE OWOWJO U D WNDEFE O W

J.2. PRODUCTIVITY

Fig. 6 shows the decision tree for the PROD response variable with different number of cases for the par-

ent node (N) and the child node (n).

=
SUCED_ITLD_DUMMY
Improvement=294.164

<= Na > No

Mean

n

27.077 63.534
Std. Dev. 33.649 Std. Dev. 34.798
83 n 41

% 66.9
Predicted 27.077

Node 1

% 33.1
Predicted 63.534

Ouerall experience in
programming acquired in

academy
Improvement=116.435

<= 15 >|].5

Node 3 Node 4
Mean 28,150 Mean 73.486
Std, Dev, 32106 Std. Dev. 28.822
n g n 3
% 7.3 % 5.8
Predicted 28.150 Predicted 73.486
! Buan = L " | -III

Current usage of the IDE used
in the experiment
Improvement=35.998

<= No

> No

|
Node &
Mean 56,537 Mean 80119
Std. Dev. 39.103 Std. Dev. 21.238
n 9 n 23

% 185
Predicted 0.119

.l

% 7.3
Predicted 56537

N=20, PROD_ITLD N=10, PROD_ITLD
n=20 n=10
% 100.0 % 100.0
Predicted 3%.132 Predicted 35132
SLICED_ITLD_DUMMY SLICED_ITLD_DUMMY
Improvement=2%4,164 Improve ment=294,164
-\:-rlND = No <-v-|ND > No
MNode 1 Node 2 Node 1 Node 2
Mean 27.077 Mean 63,534 Mean 27.077 Mean 63,534
Std. Dev. 33.64% Std. Dev. 34.798 Std. Dev. 33.64% Std. Dev. 34.798
n a3 n 41 n a3 n 41
% 66.9 % 33.1 % 66.9 % 331
Predicted 27.077 Predicted £3.534 Predicted 27.077 Predicted 63.534
[T [| ' I.II [T [T [| ' I.II
= PROD_ITLD = PROD.ITLD
N=5, N=10,
=5 n=5
N=12,

=
SLICED_ITLD_DUMMY
Improvement=294.164

<= No > No

Mean

Std. Dev. 33.649

n

% 66.9
Predicted 27.077

Node 1
27.077

63.534
Std. Dev. 34.798

83 n 41

% 33.1
Fredicted 63.534

Overall experience in
pregramming acquired in

academy
Improvement=116.435
=15 > ‘1.5
Node 4
Mean 28.150 Mean 73.486
Std. Dev, 32.106 Std. Dev. 28.822
n g n 3

% 258
Predicted 73.486

Lol

Current usage of the IDE used
in the experiment
Improvement=35.998

% 7.3
predicted 28.150

<= No

> No

|
Node &
Mean 56,537 Mean 80119
Std. Dev, 39.103 Std. Dev. 21238
n 9 n 23

% 185
Predicted 80.119

% 7.3
Predicted 56537

Fig. 6 CART decision tree for PROD

