165 research outputs found

    Plasmonic excitations in noble metals: The case of Ag

    Get PDF
    The delicate interplay between plasmonic excitations and interband transitions in noble metals is described by means of {\it ab initio} calculations and a simple model in which the conduction electron plasmon is coupled to the continuum of electron-hole pairs. Band structure effects, specially the energy at which the excitation of the dd-like bands takes place, determine the existence of a subthreshold plasmonic mode, which manifests itself in Ag as a sharp resonance at 3.8 eV. However, such a resonance is not observed in the other noble metals. Here, this different behavior is also analyzed and an explanation is provided.Comment: 9 pages, 8 figure

    Forward pi^0 Production and Associated Transverse Energy Flow in Deep-Inelastic Scattering at HERA

    Full text link
    Deep-inelastic positron-proton interactions at low values of Bjorken-x down to x \approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons are studied with the H1 experiment at HERA. The inclusive cross section for pi^0 mesons produced at small angles with respect to the proton remnant (the forward region) is presented as a function of the transverse momentum and energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x. Measurements are also presented of the transverse energy flow in events containing a forward pi^0 meson. Hadronic final state calculations based on QCD models implementing different parton evolution schemes are confronted with the data.Comment: 27 pages, 8 figures and 3 table

    B cell activity is impaired in human and mouse obesity and is responsive to an essential fatty acid upon murine influenza infection

    Get PDF
    Obesity is associated with increased risk for infections and poor responses to vaccinations, which may be due to compromised B cell function. However, there is limited information about the influence of obesity on B cell function and underlying factors that modulate B cell responses. Therefore, we studied B cell cytokine secretion and/or Ab production across obesity models. In obese humans, B cell IL-6 secretion was lowered and IgM levels were elevated upon ex vivo anti-BCR/TLR9 stimulation. In murine obesity induced by a high fat diet, ex vivo IgM and IgG were elevated with unstimulated B cells. Furthermore, the high fat diet lowered bone marrow B cell frequency accompanied by diminished transcripts of early lymphoid commitment markers. Murine B cell responses were subsequently investigated upon influenza A/Puerto Rico/8/34 infection using a Western diet model in the absence or presence of docosahexaenoic acid (DHA). DHA, an essential fatty acid with immunomodulatory properties, was tested because its plasma levels are lowered in obesity. Relative to controls, mice consuming theWestern diet had diminished Ab titers whereas theWestern diet plus DHA improved titers. Mechanistically, DHA did not directly target B cells to elevate Ab levels. Instead, DHA increased the concentration of the downstream specialized proresolving lipid mediators (SPMs) 14-hydroxydocosahexaenoic acid, 17-hydroxydocosahexaenoic acid, and protectin DX. All three SPMs were found to be effective in elevating murine Ab levels upon influenza infection. Collectively, the results demonstrate that B cell responses are impaired across human and mouse obesity models and show that essential fatty acid status is a factor influencing humoral immunity, potentially through an SPM-mediated mechanism

    Measurement of D* Meson Cross Sections at HERA and Determination of the Gluon Density in the Proton using NLO QCD

    Get PDF
    With the H1 detector at the ep collider HERA, D* meson production cross sections have been measured in deep inelastic scattering with four-momentum transfers Q^2>2 GeV2 and in photoproduction at energies around W(gamma p)~ 88 GeV and 194 GeV. Next-to-Leading Order QCD calculations are found to describe the differential cross sections within theoretical and experimental uncertainties. Using these calculations, the NLO gluon momentum distribution in the proton, x_g g(x_g), has been extracted in the momentum fraction range 7.5x10^{-4}< x_g <4x10^{-2} at average scales mu^2 =25 to 50 GeV2. The gluon momentum fraction x_g has been obtained from the measured kinematics of the scattered electron and the D* meson in the final state. The results compare well with the gluon distribution obtained from the analysis of scaling violations of the proton structure function F_2.Comment: 27 pages, 9 figures, 2 tables, submitted to Nucl. Phys.

    Measurement of Leading Proton and Neutron Production in Deep Inelastic Scattering at HERA

    Get PDF
    Deep--inelastic scattering events with a leading baryon have been detected by the H1 experiment at HERA using a forward proton spectrometer and a forward neutron calorimeter. Semi--inclusive cross sections have been measured in the kinematic region 2 <= Q^2 <= 50 GeV^2, 6.10^-5 <= x <= 6.10^-3 and baryon p_T <= MeV, for events with a final state proton with energy 580 <= E' <= 740 GeV, or a neutron with energy E' >= 160 GeV. The measurements are used to test production models and factorization hypotheses. A Regge model of leading baryon production which consists of pion, pomeron and secondary reggeon exchanges gives an acceptable description of both semi-inclusive cross sections in the region 0.7 <= E'/E_p <= 0.9, where E_p is the proton beam energy. The leading neutron data are used to estimate for the first time the structure function of the pion at small Bjorken--x.Comment: 30 pages, 9 figures, 2 tables, submitted to Eur. Phys.

    Bounding CPT Violation in the Neutral-B System

    Get PDF
    The feasibility of placing bounds on CPT violation from experiments with neutral-BB mesons is examined. We consider situations with uncorrelated mesons and ones with either unboosted or boosted correlated mesons. Analytical expressions valid for small T- and CPT-violating parameters are presented for time-dependent and time-integrated decay rates, and various relevant asymmetries are derived. We use Monte-Carlo simulations to model experimental conditions for a plausible range of CPT-violating parameters. The treatment uses realistic data incorporating background effects, resolutions, and acceptances for typical detectors at LEP, CESR, and the future BB factories. Presently, there are no bounds on CPT violation in the BB system. We demonstrate that limits of order 10\% on CPT violation can be obtained from data already extant, and we determine the CPT reach attainable within the next few years.Comment: accepted for publication in Physical Review

    Image Processing with Spiking Neuron Networks

    Full text link
    International audienceArtificial neural networks have been well developed so far. First two generations of neural networks have had a lot of successful applications. Spiking Neuron Networks (SNNs) are often referred to as the third generation of neural networks which have potential to solve problems related to biological stimuli. They derive their strength and interest from an accurate modeling of synaptic interactions between neurons, taking into account the time of spike emission. SNNs overcome the computational power of neural networks made of threshold or sigmoidal units. Based on dynamic event-driven processing, they open up new horizons for developing models with an exponential capacity of memorizing and a strong ability to fast adaptation.Moreover, SNNs add a new dimension, the temporal axis, to the representation capacity and the processing abilities of neural networks. In this chapter, we present how SNN can be applied with efficacy in image clustering, segmentation and edge detection. Results obtained confirm the validity of the approach

    Improving Genetic Prediction by Leveraging Genetic Correlations Among Human Diseases and Traits

    Get PDF
    Genomic prediction has the potential to contribute to precision medicine. However, to date, the utility of such predictors is limited due to low accuracy for most traits. Here theory and simulation study are used to demonstrate that widespread pleiotropy among phenotypes can be utilised to improve genomic risk prediction. We show how a genetic predictor can be created as a weighted index that combines published genome-wide association study (GWAS) summary statistics across many different traits. We apply this framework to predict risk of schizophrenia and bipolar disorder in the Psychiatric Genomics consortium data, finding substantial heterogeneity in prediction accuracy increases across cohorts. For six additional phenotypes in the UK Biobank data, we find increases in prediction accuracy ranging from 0.7 for height to 47 for type 2 diabetes, when using a multi-trait predictor that combines published summary statistics from multiple traits, as compared to a predictor based only on one trait. © 2018 The Author(s)

    Genome-wide association study identifies 30 Loci Associated with Bipolar Disorder

    Get PDF
    This paper is dedicated to the memory of Psychiatric Genomics Consortium (PGC) founding member and Bipolar disorder working group co-chair Pamela Sklar. We thank the participants who donated their time, experiences and DNA to this research, and to the clinical and scientific teams that worked with them. We are deeply indebted to the investigators who comprise the PGC. The views expressed are those of the authors and not necessarily those of any funding or regulatory body. Analyses were carried out on the NL Genetic Cluster Computer (http://www.geneticcluster.org ) hosted by SURFsara, and the Mount Sinai high performance computing cluster (http://hpc.mssm.edu).Bipolar disorder is a highly heritable psychiatric disorder. We performed a genome-wide association study including 20,352 cases and 31,358 controls of European descent, with follow-up analysis of 822 variants with P<1x10-4 in an additional 9,412 cases and 137,760 controls. Eight of the 19 variants that were genome-wide significant (GWS, p < 5x10-8) in the discovery GWAS were not GWS in the combined analysis, consistent with small effect sizes and limited power but also with genetic heterogeneity. In the combined analysis 30 loci were GWS including 20 novel loci. The significant loci contain genes encoding ion channels, neurotransmitter transporters and synaptic components. Pathway analysis revealed nine significantly enriched gene-sets including regulation of insulin secretion and endocannabinoid signaling. BDI is strongly genetically correlated with schizophrenia, driven by psychosis, whereas BDII is more strongly correlated with major depressive disorder. These findings address key clinical questions and provide potential new biological mechanisms for BD.This work was funded in part by the Brain and Behavior Research Foundation, Stanley Medical Research Institute, University of Michigan, Pritzker Neuropsychiatric Disorders Research Fund L.L.C., Marriot Foundation and the Mayo Clinic Center for Individualized Medicine, the NIMH Intramural Research Program; Canadian Institutes of Health Research; the UK Maudsley NHS Foundation Trust, NIHR, NRS, MRC, Wellcome Trust; European Research Council; German Ministry for Education and Research, German Research Foundation IZKF of Münster, Deutsche Forschungsgemeinschaft, ImmunoSensation, the Dr. Lisa-Oehler Foundation, University of Bonn; the Swiss National Science Foundation; French Foundation FondaMental and ANR; Spanish Ministerio de Economía, CIBERSAM, Industria y Competitividad, European Regional Development Fund (ERDF), Generalitat de Catalunya, EU Horizon 2020 Research and Innovation Programme; BBMRI-NL; South-East Norway Regional Health Authority and Mrs. Throne-Holst; Swedish Research Council, Stockholm County Council, Söderström Foundation; Lundbeck Foundation, Aarhus University; Australia NHMRC, NSW Ministry of Health, Janette M O'Neil and Betty C Lynch

    Measurement and QCD Analysis of Neutral and Charged Current Cross Sections at HERA

    Get PDF
    corecore